Department of Chemistry, University of California, Berkeley, California 94720, United States.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Phys Chem Lett. 2022 Jan 20;13(2):574-579. doi: 10.1021/acs.jpclett.1c03837. Epub 2022 Jan 11.
We use molecular dynamics simulations to study the thermodynamics and kinetics of alanine dipeptide isomerization at the air-water interface. Thermodynamically, we find an affinity of the dipeptide to the interface. This affinity arises from stabilizing intramolecular interactions that become unshielded as the dipeptide is desolvated. Kinetically, we consider the rate of transitions between the α and β conformations of alanine dipeptide and evaluate it as a continuous function of the distance from the interface using a recent extension of transition path sampling, TPS+U. The rate of isomerization at the Gibbs dividing surface is suppressed relative to the bulk by a factor of 3. Examination of the ensemble of transition states elucidates the role of solvent degrees of freedom in mediating favorable intramolecular interactions along the reaction pathway of isomerization. Near the air-water interface, water is less effective at mediating these intramolecular interactions.
我们使用分子动力学模拟研究了在气-水界面上丙氨酸二肽异构化的热力学和动力学。从热力学角度来看,我们发现二肽对界面具有亲和力。这种亲和力源于稳定的分子内相互作用,随着二肽去溶剂化,这些相互作用不再被屏蔽。从动力学角度来看,我们考虑了丙氨酸二肽的α和β构象之间的转变速率,并使用过渡路径采样(TPS+U)的最新扩展,将其评估为距界面距离的连续函数。在吉布斯分隔表面上的异构化速率相对于体相被抑制了 3 倍。对过渡态集合的考察阐明了溶剂自由度在沿异构化反应途径介导有利的分子内相互作用方面的作用。在气-水界面附近,水在介导这些分子内相互作用方面的效果较差。