Am J Epidemiol. 2022 May 20;191(6):1116-1124. doi: 10.1093/aje/kwab295.
Warfarin's complex dosing is a significant barrier to measurement of its exposure in observational studies using population databases. Using population-based administrative data (1996-2019) from British Columbia, Canada, we developed a method based on statistical modeling (Random Effects Warfarin Days' Supply (REWarDS)) that involves fitting a random-effects linear regression model to patients' cumulative dosage over time for estimation of warfarin exposure. Model parameters included a minimal universally available set of variables from prescription records for estimation of patients' individualized average daily doses of warfarin. REWarDS estimates were validated against a reference standard (manual calculation of the daily dose using the free-text administration instructions entered by the dispensing pharmacist) and compared with alternative methods (fixed window, fixed tablet, defined daily dose, and reverse wait time distribution) using Pearson's correlation coefficient (r), the intraclass correlation coefficient, and the root mean squared error. REWarDS-estimated days' supply showed strong correlation and agreement with the reference standard (r = 0.90 (95% confidence interval (CI): 0.90, 0.90); intraclass correlation coefficient = 0.95 (95% CI: 0.94, 0.95); root mean squared error = 8.24 days) and performed better than all of the alternative methods. REWarDS-estimated days' supply was valid and more accurate than estimates from all other available methods. REWarDS is expected to confer optimal precision in studies measuring warfarin exposure using administrative data.
华法林的复杂剂量方案是使用人群数据库进行观察性研究测量其暴露情况的一个重大障碍。我们使用来自加拿大不列颠哥伦比亚省的基于人群的行政数据(1996-2019 年),开发了一种基于统计建模的方法(随机效应华法林日剂量(REWarDS)),该方法涉及对患者随时间推移的累积剂量拟合随机效应线性回归模型,以估计华法林的暴露情况。模型参数包括从处方记录中提取的一组最小的通用变量,用于估计患者的个体化平均华法林日剂量。REWarDS 估计值通过参考标准(使用配药药剂师输入的管理说明中的自由文本计算每日剂量)进行验证,并通过 Pearson 相关系数(r)、组内相关系数和均方根误差与替代方法(固定窗口、固定片剂、定义日剂量和反向等待时间分布)进行比较。REWarDS 估计的日供应量与参考标准具有很强的相关性和一致性(r=0.90(95%置信区间(CI):0.90,0.90);组内相关系数=0.95(95% CI:0.94,0.95);均方根误差=8.24 天),并且优于所有其他替代方法。REWarDS 估计的日供应量比所有其他可用方法更准确。REWarDS 有望在使用行政数据测量华法林暴露的研究中提供最佳精度。