Chae Taesik, Yang Heejae, Moon Haisle, Troczynski Tom, Ko Frank K
Department of Materials Engineering, Faculty of Applied Science, University of British Columbia, Vancouver V6T 1Z4, Canada.
Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver V6T 1Z3, Canada.
ACS Appl Bio Mater. 2020 Oct 19;3(10):6746-6755. doi: 10.1021/acsabm.0c00692. Epub 2020 Sep 28.
We report herein the structural and mechanical properties and in vitro cellular response of hydroxyapatite (HAp)/alginate nanocomposite fibrous scaffolds mimicking the mineralized collagen fibrils of bone tissue. The biomimetically "" nanocomposites, fabricated by electrospinning and in situ synthesis strategy, were compared with pure alginate nanofibers and micrometer-level HAp/alginate composite fibers. The tensile strength and elastic modulus of the nanocomposites increased by 79.3 and 158.4%, respectively, compared to those of alginate. The uniform nucleation and HAp nanocrystal growth on the alginate nanofibers resulted in such enhancement of the mechanical properties via a stress-transfer effect. Rat calvarial osteoblasts were stably attached and stretched more extensively on the nanocomposites' surface than on the pristine alginate. The controlled deposition of the HAp nanophase contributed to a much faster cell proliferation rate on the nanocomposites than on the others. The improved structural stability and osteoblast interactions suggest the fibrous nanocomposite scaffold's potential advantages for bone tissue regeneration.
我们在此报告模仿骨组织矿化胶原纤维的羟基磷灰石(HAp)/藻酸盐纳米复合纤维支架的结构、力学性能及体外细胞反应。通过静电纺丝和原位合成策略制备的仿生“纳米复合材料”,与纯藻酸盐纳米纤维和微米级HAp/藻酸盐复合纤维进行了比较。与藻酸盐相比,纳米复合材料的拉伸强度和弹性模量分别提高了79.3%和158.4%。藻酸盐纳米纤维上均匀的成核作用和HAp纳米晶体生长通过应力传递效应导致了力学性能的这种增强。大鼠颅骨成骨细胞在纳米复合材料表面比在原始藻酸盐上更稳定地附着且伸展得更广泛。HAp纳米相的可控沉积使得纳米复合材料上的细胞增殖速率比其他材料快得多。结构稳定性和与成骨细胞相互作用的改善表明纤维状纳米复合支架在骨组织再生方面具有潜在优势。