Jia Wang, Zhang Ying, Zhen Mingming, Li Jie, Zhang Tian, Shu Chunying, Wang Chunru
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Appl Bio Mater. 2020 Jan 21;3(1):450-457. doi: 10.1021/acsabm.9b00903. Epub 2019 Dec 20.
Radiotherapy is the current frontline method for cancer treatment, while the severe systemic side effects (e.g., myelosuppression) limit its application because it generates excessive reactive oxygen species. Therefore, there is a pressing need to develop effective strategies for radiotherapy protection. Here, we explored a robust myelosuppressive protector using gadofullerene nanocrystals (GFNCs) to protect mice against radiation injury, which was induced by different doses of X-rays (3, 4.5, and 6 Gy). Our data show that the radiotherapy-induced myelosuppression was remarkably reduced by the high radical scavenging abilities of GFNCs. In addition, GFNCs could normalize the oxidative stress-related indexes, such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). Of note, GFNCs provided protection of the bone marrow in tumor-bearing mice without interfering with the antitumor properties of radiotherapy. Thus, GFNCs may play a promising role in radioprotection during radiotherapy.