Department of Stem Cell and Regenerative Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.
Nat Protoc. 2022 Feb;17(2):222-251. doi: 10.1038/s41596-021-00638-7. Epub 2022 Jan 12.
During neuronal development, growth cones (GCs) of projection neurons navigate complex extracellular environments to reach distant targets, thereby generating extraordinarily complex circuitry. These dynamic structures located at the tips of axonal projections respond to substrate-bound as well as diffusible guidance cues in a neuronal subtype- and stage-specific manner to construct highly specific and functional circuitry. In vitro studies of the past decade indicate that subcellular localization of specific molecular machinery in GCs underlies the precise navigational control that occurs during circuit 'wiring'. Our laboratory has recently developed integrated experimental and analytical approaches enabling high-depth, quantitative proteomic and transcriptomic investigation of subtype- and stage-specific GC molecular machinery directly from the rodent central nervous system (CNS) in vivo. By using these approaches, a pure population of GCs and paired somata can be isolated from any neuronal subtype of the CNS that can be fluorescently labeled. GCs are dissociated from parent axons using fluid shear forces, and a bulk GC fraction is isolated by buoyancy ultracentrifugation. Subtype-specific GCs and somata are purified by recently developed fluorescent small particle sorting and established FACS of neurons and are suitable for downstream analyses of proteins and RNAs, including small RNAs. The isolation of subtype-specific GCs and parent somata takes ~3 h, plus sorting time, and ~1-2 h for subsequent extraction of molecular contents. RNA library preparation and sequencing can take several days to weeks, depending on the turnaround time of the core facility involved.
在神经元发育过程中,投射神经元的生长锥(GCs)在复杂的细胞外环境中导航,以到达遥远的靶标,从而产生异常复杂的电路。这些位于轴突投射尖端的动态结构以神经元亚型和阶段特异性的方式响应基底结合的以及扩散的导向线索,从而构建高度特异和功能的电路。过去十年的体外研究表明,GC 中特定分子机制的亚细胞定位是发生在电路“布线”过程中的精确导航控制的基础。我们的实验室最近开发了集成的实验和分析方法,能够直接从体内啮齿动物中枢神经系统 (CNS) 中对亚型和阶段特异性 GC 分子机制进行高深度、定量蛋白质组学和转录组学研究。通过使用这些方法,可以从 CNS 中的任何神经元亚型中分离出荧光标记的纯 GC 群体和配对胞体。通过流体剪切力从亲代轴突中解离 GC,并通过浮力超速离心分离 GC 粗提物。通过最近开发的荧光小颗粒分选和已建立的神经元 FACS 对亚型特异性 GCs 和胞体进行纯化,适用于蛋白质和 RNA(包括小 RNA)的下游分析。亚型特异性 GCs 和亲代胞体的分离需要大约 3 小时,加上分选时间,随后提取分子内容物需要 1-2 小时。RNA 文库制备和测序可能需要几天到几周的时间,具体取决于涉及的核心设施的周转时间。