Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA.
Nature. 2019 Jan;565(7739):356-360. doi: 10.1038/s41586-018-0847-y. Epub 2019 Jan 9.
The development of neural circuits relies on axon projections establishing diverse, yet well-defined, connections between areas of the nervous system. Each projection is formed by growth cones-subcellular specializations at the tips of growing axons, encompassing sets of molecules that control projection-specific growth, guidance, and target selection. To investigate the set of molecules within native growth cones that form specific connections, here we developed growth cone sorting and subcellular RNA-proteome mapping, an approach that identifies and quantifies local transcriptomes and proteomes from labelled growth cones of single projections in vivo. Using this approach on the developing callosal projection of the mouse cerebral cortex, we mapped molecular enrichments in trans-hemispheric growth cones relative to their parent cell bodies, producing paired subcellular proteomes and transcriptomes from single neuron subtypes directly from the brain. These data provide generalizable proof-of-principle for this approach, and reveal molecular specializations of the growth cone, including accumulations of the growth-regulating kinase mTOR, together with mRNAs that contain mTOR-dependent motifs. These findings illuminate the relationships between subcellular distributions of RNA and protein in developing projection neurons, and provide a systems-level approach for the discovery of subtype- and stage-specific molecular substrates of circuit wiring, miswiring, and the potential for regeneration.
神经回路的发育依赖于轴突投射,在神经系统的不同区域之间建立多样化但明确的连接。每个投射都是由生长锥形成的——生长轴突尖端的亚细胞特化,包含控制投射特异性生长、导向和目标选择的分子集。为了研究在天然生长锥中形成特定连接的分子集,我们在这里开发了生长锥分选和亚细胞 RNA 蛋白质组图谱,这是一种从体内单个投射的标记生长锥中鉴定和定量局部转录组和蛋白质组的方法。我们使用这种方法研究了小鼠大脑皮层胼胝体投射的发育,绘制了相对于其亲代细胞体的跨半球生长锥中的分子富集图谱,直接从大脑中为单个神经元亚型产生了配对的亚细胞蛋白质组和转录组。这些数据为该方法提供了可推广的原理证明,并揭示了生长锥的分子特化,包括生长调节激酶 mTOR 的积累,以及含有 mTOR 依赖性基序的 mRNAs。这些发现阐明了发育中的投射神经元中 RNA 和蛋白质的亚细胞分布之间的关系,并提供了一种系统水平的方法,用于发现电路布线、连接错误和再生的潜在特定亚型和阶段的分子底物。