Suppr超能文献

基于单一路径检测的城市公共交通旅行时间预测

Travel time prediction of urban public transportation based on detection of single routes.

机构信息

The Institute of Road and Traffic Engineering, Zhejiang Normal University, Jinhua, Zhejiang Province, China.

Kansas Public Employee Retirement System, Topeka, Kansas, United States of America.

出版信息

PLoS One. 2022 Jan 14;17(1):e0262535. doi: 10.1371/journal.pone.0262535. eCollection 2022.

Abstract

Improving travel time prediction for public transit effectively enhances service reliability, optimizes travel structure, and alleviates traffic problems. Its greater time-variance and uncertainty make predictions for short travel times (≤35min) more subject to be influenced by random factors. It requires higher precision and is more complicated than long-term predictions. Effectively extracting and mining real-time, accurate, reliable, and low-cost multi-source data such as GPS, AFC, and IC can provide data support for travel time prediction. Kalman filter model has high accuracy in one-step prediction and can be used to calculate a large amount of data. This paper adopts the Kalman filter as a travel time prediction model for a single bus based on single-line detection: including the travel time prediction model of route (RTM) and the stop dwell time prediction model (DTM); the evaluation criteria and indexes of the models are given. The error analysis of the prediction results is carried out based on AVL data by case study. Results show that under the precondition of multi-source data, the public transportation prediction model can meet the accuracy requirement for travel time prediction and the prediction effect of the whole route is superior to that of the route segment between stops.

摘要

改善公共交通的出行时间预测可以有效地提高服务可靠性、优化出行结构和缓解交通问题。其较大的时变性和不确定性使得对短出行时间(≤35 分钟)的预测更容易受到随机因素的影响。与长期预测相比,它需要更高的精度,并且更加复杂。有效地提取和挖掘 GPS、AFC 和 IC 等实时、准确、可靠且低成本的多源数据,可以为出行时间预测提供数据支持。卡尔曼滤波模型在一步预测中具有较高的精度,并且可以用于计算大量数据。本文采用卡尔曼滤波作为基于单线检测的单辆公交车的出行时间预测模型:包括线路出行时间预测模型(RTM)和站点停留时间预测模型(DTM);给出了模型的评价标准和指标。通过案例研究,基于 AVL 数据对预测结果进行了误差分析。结果表明,在多源数据的前提下,公共交通预测模型可以满足出行时间预测的精度要求,且整条线路的预测效果优于站点间路段的预测效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d10/8759653/b7f4ceef4817/pone.0262535.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验