Suppr超能文献

SRDFM:暹罗响应深度分解机用于改进抗癌药物推荐。

SRDFM: Siamese Response Deep Factorization Machine to improve anti-cancer drug recommendation.

作者信息

Su Ran, Huang YiXuan, Zhang De-Gan, Xiao Guobao, Wei Leyi

机构信息

The University of New South Wales, Australia.

School of Computer Software, College of Intelligence and Computing, Tianjin University, China.

出版信息

Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbab534.

Abstract

Predicting the response of cancer patients to a particular treatment is a major goal of modern oncology and an important step toward personalized treatment. In the practical clinics, the clinicians prefer to obtain the most-suited drugs for a particular patient instead of knowing the exact values of drug sensitivity. Instead of predicting the exact value of drug response, we proposed a deep learning-based method, named Siamese Response Deep Factorization Machines (SRDFM) Network, for personalized anti-cancer drug recommendation, which directly ranks the drugs and provides the most effective drugs. A Siamese network (SN), a type of deep learning network that is composed of identical subnetworks that share the same architecture, parameters and weights, was used to measure the relative position (RP) between drugs for each cell line. Through minimizing the difference between the real RP and the predicted RP, an optimal SN model was established to provide the rank for all the candidate drugs. Specifically, the subnetwork in each side of the SN consists of a feature generation level and a predictor construction level. On the feature generation level, both drug property and gene expression, were adopted to build a concatenated feature vector, which even enables the recommendation for newly designed drugs with only chemical property known. Particularly, we developed a response unit here to generate weighted genetic feature vector to simulate the biological interaction mechanism between a specific drug and the genes. For the predictor construction level, we built this level integrating a factorization machine (FM) component with a deep neural network component. The FM can well handle the discrete chemical information and both low-order and high-order feature interactions could be sufficiently learned. Impressively, the SRDFM works well on both single-drug recommendation and synergic drug combination. Experiment result on both single-drug and synergetic drug data sets have shown the efficiency of the SRDFM. The Python implementation for the proposed SRDFM is available at at https://github.com/RanSuLab/SRDFM Contact: ran.su@tju.edu.cn, gbx@mju.edu.cn and weileyi@sdu.edu.cn.

摘要

预测癌症患者对特定治疗的反应是现代肿瘤学的主要目标,也是迈向个性化治疗的重要一步。在实际临床中,临床医生更倾向于为特定患者获取最适合的药物,而非了解药物敏感性的精确值。我们提出了一种基于深度学习的方法——连体反应深度分解机(SRDFM)网络,用于个性化抗癌药物推荐,该方法不是预测药物反应的精确值,而是直接对药物进行排序并提供最有效的药物。连体网络(SN)是一种深度学习网络,由共享相同架构、参数和权重的相同子网络组成,用于测量每种细胞系中药物之间的相对位置(RP)。通过最小化真实RP与预测RP之间的差异,建立了一个最优的SN模型,为所有候选药物提供排名。具体而言,SN两侧的子网络由特征生成层和预测器构建层组成。在特征生成层,采用药物特性和基因表达来构建一个拼接特征向量,这甚至能够为仅已知化学特性的新设计药物提供推荐。特别地,我们在此开发了一个反应单元来生成加权遗传特征向量,以模拟特定药物与基因之间的生物相互作用机制。对于预测器构建层,我们将分解机(FM)组件与深度神经网络组件集成来构建该层。FM能够很好地处理离散化学信息,并且可以充分学习低阶和高阶特征相互作用。令人印象深刻的是,SRDFM在单药推荐和协同药物组合方面都表现良好。单药和协同药物数据集的实验结果均表明了SRDFM的有效性。所提出的SRDFM的Python实现可在https://github.com/RanSuLab/SRDFM获取。联系方式:ran.su@tju.edu.cn,gbx@mju.edu.cn和weileyi@sdu.edu.cn。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验