Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK.
School of Chemical Engineering, Chonnam National University, Gwangju, Republic of Korea.
Pharm Res. 2022 Jan;39(1):41-56. doi: 10.1007/s11095-021-03161-2. Epub 2022 Jan 19.
This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.
The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV.
Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots.
Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.
本研究建立了一个使用组织型纤溶酶原激活剂(tPA)的常规溶栓和靶向溶栓的多物理模拟平台。基于我们的计算结果,研究了治疗参数对溶栓动力学和副作用风险的影响。
该模型通过纳入靶向溶栓来扩展我们之前开发的一维(1D)纤维蛋白溶解数学模型。它由两部分组成:(i)一个系统药代动力学(PK)和药效学(PD)与 1D 闭塞动脉局部 PD 的耦合数学模型,以及(ii)通过激活血小板靶向载 tPA 的纳米囊泡(tPA-NV)的靶向溶栓系统的机制模型,模型参数来自我们的体外实验。通过改变血栓位置和组成以及改变游离 tPA 或 tPA-NV 的剂量方案,共模拟了 16 种治疗方案。
我们的模拟结果表明,tPA-NV 比游离 tPA 具有更多溶栓优势。它降低了 tPA 的全身暴露,从而最大限度地降低了出血并发症的风险。不同 tPA-NV 剂量的模拟表明,tPA-NV 剂量为推荐剂量的 10%时,与游离 tPA 标准剂量方案一样有效,表明我们的 tPA-NV 作为一种新的溶栓策略具有降低 tPA 剂量的潜力。此外,tPA-NV 可实现更快的再通,特别是对于富含血小板(或富含纤维蛋白)的血栓。
我们的溶栓模拟平台具有经过良好调整的模型参数,可以用于通过在各种治疗方案下进行获益/风险评估来评估和优化现有和新溶栓治疗的治疗方案。