Suppr超能文献

基于相关性分析和k近邻算法的不同心脏状态电流密度分布图的多阶段分类

Multistage Classification of Current Density Distribution Maps of Various Heart States Based on Correlation Analysis and k-NN Algorithm.

作者信息

Udovychenko Yevhenii, Popov Anton, Chaikovsky Illya

机构信息

Electronic Engineering Department, Faculty of Electronics, Kyiv Polytechnic Institute, Kyiv, Ukraine.

Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

出版信息

Front Med Technol. 2021 Dec 8;3:779800. doi: 10.3389/fmedt.2021.779800. eCollection 2021.

Abstract

Magnetocardiography is a modern method of registration of the magnetic component of electromagnetic field, generated by heart activity. Magnetocardiography results are a useful source for the diagnosis of various heart diseases and states, but their usage is still undervalued in the cardiology community. In this study, a two-stage classification by correlation analysis using a k-Nearest Neighbor (k-NN) algorithm is applied for the binary classification of myocardium current density distribution maps (CDDMs). Fourteen groups of CDDMs from patients with different heart states, healthy volunteers, sportsmen, patients with negative T-peak, patients with myocardial damage, male and female patients with microvascular disease, patients with ischemic heart disease, and patients with left ventricular hypertrophy, divided into five and three different groups depending on the degree of pathology, were compared. Selection of best metric, used in classifier and number of neighbors, was performed to define the classifier with best performance for each pair of heart states. Accuracy, specificity, sensitivity, and precision values dependent on the number of neighbors are obtained for each class. The proposed method allows to obtain a value of average accuracy equal to 96%, 70% sensitivity, 98% specificity, and 70% precision.

摘要

磁心动图是一种记录由心脏活动产生的电磁场磁成分的现代方法。磁心动图结果是诊断各种心脏病和心脏状态的有用来源,但在心脏病学界其应用仍未得到充分重视。在本研究中,使用k近邻(k-NN)算法通过相关分析进行两阶段分类,用于心肌电流密度分布图(CDDMs)的二元分类。比较了来自不同心脏状态患者、健康志愿者、运动员、T波峰值为负的患者、心肌损伤患者、微血管疾病男女患者、缺血性心脏病患者和左心室肥厚患者的14组CDDMs,根据病理程度分为五个和三个不同组。在分类器中使用的最佳度量和邻居数量进行了选择,以确定针对每对心脏状态具有最佳性能的分类器。针对每个类别获得了取决于邻居数量的准确率、特异性、灵敏度和精确率值。所提出的方法能够获得平均准确率为96%、灵敏度为70%、特异性为98%和精确率为70%的值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a01f/8757770/8d10fe9dfcda/fmedt-03-779800-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验