Suppr超能文献

对抗鲁棒学习 熵正则化

Adversarially Robust Learning Entropic Regularization.

作者信息

Jagatap Gauri, Joshi Ameya, Chowdhury Animesh Basak, Garg Siddharth, Hegde Chinmay

机构信息

Electrical and Computer Engineering, New York University, New York, NY, United States.

出版信息

Front Artif Intell. 2022 Jan 4;4:780843. doi: 10.3389/frai.2021.780843. eCollection 2021.

Abstract

In this paper we propose a new family of algorithms, ATENT, for training adversarially robust deep neural networks. We formulate a new loss function that is equipped with an additional entropic regularization. Our loss function considers the contribution of adversarial samples that are drawn from a specially designed distribution in the data space that assigns high probability to points with high loss and in the immediate neighborhood of training samples. Our proposed algorithms optimize this loss to seek adversarially robust valleys of the loss landscape. Our approach achieves competitive (or better) performance in terms of robust classification accuracy as compared to several state-of-the-art robust learning approaches on benchmark datasets such as MNIST and CIFAR-10.

摘要

在本文中,我们提出了一种新的算法家族ATENT,用于训练对抗鲁棒的深度神经网络。我们制定了一个新的损失函数,该函数配备了额外的熵正则化。我们的损失函数考虑了从数据空间中专门设计的分布中抽取的对抗样本的贡献,该分布将高概率分配给损失高的点以及训练样本的紧邻邻域中的点。我们提出的算法优化此损失,以寻找损失景观中的对抗鲁棒谷。与MNIST和CIFAR-10等基准数据集上的几种最新鲁棒学习方法相比,我们的方法在鲁棒分类准确率方面实现了有竞争力(或更好)的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4273/8764444/0c4cf1d02db8/frai-04-780843-g001.jpg

相似文献

1
Adversarially Robust Learning Entropic Regularization.对抗鲁棒学习 熵正则化
Front Artif Intell. 2022 Jan 4;4:780843. doi: 10.3389/frai.2021.780843. eCollection 2021.
4
LRNAS: Differentiable Searching for Adversarially Robust Lightweight Neural Architecture.LRNAS:可微搜索对抗鲁棒轻量级神经架构
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):5629-5643. doi: 10.1109/TNNLS.2024.3382724. Epub 2025 Feb 28.
8
Sinkhorn Adversarial Attack and Defense.Sinkhorn对抗攻击与防御
IEEE Trans Image Process. 2022;31:4039-4049. doi: 10.1109/TIP.2022.3180207. Epub 2022 Jun 14.
9
Generalizable and Discriminative Representations for Adversarially Robust Few-Shot Learning.用于对抗鲁棒少样本学习的可泛化和判别性表示
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):5480-5493. doi: 10.1109/TNNLS.2024.3379172. Epub 2025 Feb 28.

本文引用的文献

1
Flat minima.平坦最小值
Neural Comput. 1997 Jan 1;9(1):1-42. doi: 10.1162/neco.1997.9.1.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验