Suppr超能文献

用于计算药物重定位的神经度量因子分解。

The Neural Metric Factorization for Computational Drug Repositioning.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):731-741. doi: 10.1109/TCBB.2022.3144429. Epub 2023 Feb 3.

Abstract

Computational drug repositioning aims to discover new therapeutic diseases for marketed drugs and has the advantages of low cost, short development cycle, and high controllability compared to traditional drug development. The matrix factorization model has become the cornerstone technique for computational drug repositioning due to its ease of implementation and excellent scalability. However, the matrix factorization model uses the inner product operation to represent the association between drugs and diseases, which is lacking in expressive ability. Moreover, the degree of similarity of drugs or diseases could not be implied on their respective latent factor vectors, which is not satisfy the common sense of drug discovery. Therefore, a neural metric factorization model for computational drug repositioning (NMFDR) is proposed in this work. We novelly consider the latent factor vector of drugs and diseases as a point in the high-dimensional coordinate system and propose a generalized euclidean distance to represent the association between drugs and diseases to compensate for the shortcomings of the inner product operation. Furthermore, by embedding multiple drug (disease) metrics information into the encoding space of the latent factor vector, the information about the similarity between drugs (diseases) can be reflected in the distance between latent factor vectors. Finally, we conduct wide analysis experiments on three real datasets to demonstrate the effectiveness of the above improvement points and the superiority of the NMFDR model.

摘要

计算药物重定位旨在为已上市药物发现新的治疗疾病的用途,与传统药物开发相比,具有成本低、开发周期短、可控性高的优点。由于易于实现和出色的可扩展性,矩阵分解模型已成为计算药物重定位的基石技术。然而,矩阵分解模型使用内积运算来表示药物和疾病之间的关联,这在表达能力上有所欠缺。此外,药物或疾病的相似程度不能暗示在它们各自的潜在因子向量上,这不符合药物发现的常识。因此,在这项工作中提出了一种用于计算药物重定位的神经度量因式分解模型(NMFDR)。我们新颖地将药物和疾病的潜在因子向量视为高维坐标系中的一个点,并提出了广义欧几里得距离来表示药物和疾病之间的关联,以弥补内积运算的不足。此外,通过将多个药物(疾病)度量信息嵌入到潜在因子向量的编码空间中,可以在潜在因子向量之间的距离中反映药物(疾病)之间的相似性信息。最后,我们在三个真实数据集上进行了广泛的分析实验,以证明上述改进点的有效性和 NMFDR 模型的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验