Suppr超能文献

无负采样的计算药物重新定位

The Computational Drug Repositioning Without Negative Sampling.

作者信息

Yang Xinxing, Yang Genke, Chu Jian

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1506-1517. doi: 10.1109/TCBB.2022.3212051. Epub 2023 Apr 3.

Abstract

Computational drug repositioning technology is an effective tool to accelerate drug development. Although this technique has been widely used and successful in recent decades, many existing models still suffer from multiple drawbacks such as the massive number of unvalidated drug-disease associations and the inner product. The limitations of these works are mainly due to the following two reasons: firstly, previous works used negative sampling techniques to treat unvalidated drug-disease associations as negative samples, which is invalid in real-world settings; secondly, the inner product cannot fully take into account the feature information contained in the latent factor of drug and disease. In this paper, we propose a novel PUON framework for addressing the above deficiencies, which models the risk estimator of computational drug repositioning only using validated (Positive) and unvalidated (Unlabelled) drug-disease associations without employing negative sampling techniques. The PUON also proposed an Outer Neighborhood-based classifier for modeling the cross-feature information of the latent facotor. For a comprehensive comparison, we considered 6 popular baselines. Extensive experiments in four real-world datasets showed that PUON model achieved the best performance based on 6 evaluation metrics.

摘要

计算药物重新定位技术是加速药物开发的有效工具。尽管该技术在近几十年中得到了广泛应用并取得了成功,但许多现有模型仍然存在诸多缺陷,例如大量未经验证的药物 - 疾病关联以及内积问题。这些工作的局限性主要归因于以下两个原因:首先,先前的工作使用负采样技术将未经验证的药物 - 疾病关联视为负样本,这在实际应用中是无效的;其次,内积无法充分考虑药物和疾病潜在因素中包含的特征信息。在本文中,我们提出了一种新颖的PUON框架来解决上述不足,该框架仅使用已验证(正)和未验证(未标记)的药物 - 疾病关联对计算药物重新定位的风险估计器进行建模,而不采用负采样技术。PUON还提出了一种基于外部邻域的分类器来对潜在因素的交叉特征信息进行建模。为了进行全面比较,我们考虑了6个流行的基线。在四个真实世界数据集上进行的大量实验表明,基于6个评估指标,PUON模型取得了最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验