Suppr超能文献

医疗信息学在黑盒 AI 与信任之间的紧张关系

Medical Informatics in a Tension Between Black-Box AI and Trust.

机构信息

Bern University of Appl. Sciences, Department of Medical Informatics, Switzerland.

出版信息

Stud Health Technol Inform. 2022 Jan 14;289:41-44. doi: 10.3233/SHTI210854.

Abstract

For medical informaticians, it became more and more crucial to assess the benefits and disadvantages of AI-based solutions as promising alternatives for many traditional tools. Besides quantitative criteria such as accuracy and processing time, healthcare providers are often interested in qualitative explanations of the solutions. Explainable AI provides methods and tools, which are interpretable enough that it affords different stakeholders a qualitative understanding of its solutions. Its main purpose is to provide insights into the black-box mechanism of machine learning programs. Our goal here is to advance the problem of qualitatively assessing AI from the perspective of medical informaticians by providing insights into the central notions, namely: explainability, interpretability, understanding, trust, and confidence.

摘要

对于医学信息学家来说,评估基于人工智能的解决方案的优缺点变得越来越重要,因为这些解决方案是许多传统工具的有前途的替代品。除了准确性和处理时间等定量标准外,医疗保健提供者通常还对解决方案的定性解释感兴趣。可解释的人工智能提供了足够可解释的方法和工具,使不同的利益相关者能够从定性的角度理解其解决方案。其主要目的是深入了解机器学习程序的黑盒机制。我们的目标是从医学信息学家的角度来推进人工智能的定性评估问题,为此我们深入探讨了一些核心概念,即:可解释性、可理解性、理解、信任和信心。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验