Suppr超能文献

基于光流估计的视图合成生成高质量全景图。

Generating High-Quality Panorama by View Synthesis Based on Optical Flow Estimation.

机构信息

School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen 518066, China.

出版信息

Sensors (Basel). 2022 Jan 8;22(2):470. doi: 10.3390/s22020470.

Abstract

Generating high-quality panorama is a key element in promoting the development of VR content. The panoramas generated by the traditional image stitching algorithm have some limitations, such as artifacts and irregular shapes. We consider solving this problem from the perspective of view synthesis. We propose a view synthesis approach based on optical flow to generate a high-quality omnidirectional panorama. In the first stage, we present a novel optical flow estimation algorithm to establish a dense correspondence between the overlapping areas of the left and right views. The result obtained can be approximated as the parallax of the scene. In the second stage, the reconstructed version of the left and the right views is generated by warping the pixels under the guidance of optical flow, and the alpha blending algorithm is used to synthesize the final novel view. Experimental results demonstrate that the subjective experience obtained by our approach is better than the comparison algorithm without cracks or artifacts. Besides the commonly used image quality assessment PSNR and SSIM, we also calculate MP-PSNR, which can provide accurate high-quality predictions for synthesized views. Our approach can achieve an improvement of about 1 dB in MP-PSNR and PSNR and 25% in SSIM, respectively.

摘要

生成高质量全景图是推动 VR 内容发展的关键因素。传统的图像拼接算法生成的全景图存在一些局限性,例如伪影和不规则形状。我们从视图合成的角度考虑解决这个问题。我们提出了一种基于光流的视图合成方法,用于生成高质量的全向全景图。在第一阶段,我们提出了一种新颖的光流估计算法,以建立左右视图重叠区域之间的密集对应关系。得到的结果可以近似为场景的视差。在第二阶段,根据光流的引导对左右视图进行像素变形,生成重建版本,并使用 alpha 混合算法合成最终的新视图。实验结果表明,我们的方法获得的主观体验优于没有裂缝或伪影的比较算法。除了常用的图像质量评估 PSNR 和 SSIM 外,我们还计算了 MP-PSNR,它可以为合成视图提供准确的高质量预测。我们的方法在 MP-PSNR 和 PSNR 方面分别提高了约 1dB,在 SSIM 方面提高了 25%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8648/8780851/cb25c373d690/sensors-22-00470-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验