Ma Dianbo, Imamura Kousuke, Gao Ziyan, Wang Xiangjie, Yamane Satoshi
Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 9201192, Japan.
School of Information Science, Japan Advanced Institute of Science and Technology, Nomi 9231292, Japan.
Sensors (Basel). 2025 Apr 22;25(9):2653. doi: 10.3390/s25092653.
Optical flow estimation is a fundamental and long-standing task in computer vision, facilitating the understanding of motion within visual scenes. In this study, we aim to improve optical flow estimation, particularly in challenging scenarios involving small and fast-moving objects. Specifically, we proposed a learning-based model incorporating two key components: the Hierarchical Motion Field Alignment module, which ensures accurate estimation of objects of varying sizes while maintaining manageable computational complexity, and the Correlation Self-Attention module, which effectively handles large displacements, making the model suitable for scenarios with fast-moving objects. Additionally, we introduced a Multi-Scale Correlation Search layer to enhance the four-dimensional cost volume, enabling the model to address various types of motion. Experimental results demonstrate that our model achieves superior generalization performance and significantly improves the estimation of small, fast-moving objects.
光流估计是计算机视觉中一项基础且长期存在的任务,有助于理解视觉场景中的运动。在本研究中,我们旨在改进光流估计,特别是在涉及小尺寸和快速移动物体的具有挑战性的场景中。具体而言,我们提出了一种基于学习的模型,该模型包含两个关键组件:分层运动场对齐模块,它在保持可管理的计算复杂度的同时确保对不同大小物体的准确估计;以及相关自注意力模块,它有效处理大位移,使模型适用于具有快速移动物体的场景。此外,我们引入了多尺度相关搜索层来增强四维代价体,使模型能够处理各种类型的运动。实验结果表明,我们的模型具有卓越的泛化性能,并显著改进了对小尺寸、快速移动物体的估计。