Öner Ibrahim Halil, David Christin, Querebillo Christine Joy, Weidinger Inez M, Ly Khoa Hoang
Fakultät für Chemie und Lebensmittelchemie, Technische Universität Dresden, Andreas-Schubert-Bau, Zellescher Weg 19, 01069 Dresden, Germany.
Abbe Center of Photonics, Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany.
Sensors (Basel). 2022 Jan 9;22(2):487. doi: 10.3390/s22020487.
We present a facile approach for the determination of the electromagnetic field enhancement of nanostructured TiN electrodes. As model system, TiN with partially collapsed nanotube structure obtained from nitridation of TiO nanotube arrays was used. Using surface-enhanced Raman scattering (SERS) spectroscopy, the electromagnetic field enhancement factors (EFs) of the substrate across the optical region were determined. The non-surface binding SERS reporter group azidobenzene was chosen, for which contributions from the chemical enhancement effect can be minimized. Derived EFs correlated with the electronic absorption profile and reached 3.9 at 786 nm excitation. Near-field enhancement and far-field absorption simulated with rigorous coupled wave analysis showed good agreement with the experimental observations. The major optical activity of TiN was concluded to originate from collective localized plasmonic modes at ca. 700 nm arising from the specific nanostructure.
我们提出了一种简便的方法来测定纳米结构氮化钛(TiN)电极的电磁场增强。作为模型系统,使用了通过对TiO纳米管阵列进行氮化得到的具有部分塌陷纳米管结构的TiN。利用表面增强拉曼散射(SERS)光谱,测定了整个光学区域内基底的电磁场增强因子(EFs)。选择了非表面结合的SERS报告基团叠氮苯,其化学增强效应的贡献可以最小化。推导得到的EFs与电子吸收谱相关,在786 nm激发下达到3.9。用严格耦合波分析模拟的近场增强和远场吸收与实验观察结果吻合良好。得出结论,TiN的主要光学活性源自约700 nm处由特定纳米结构产生的集体局域等离子体模式。