Suppr超能文献

基于二阶半全局立体匹配和快速点定位 Delaunay 三角剖分的 3D 重建方法。

3D reconstruction method based on second-order semiglobal stereo matching and fast point positioning Delaunay triangulation.

机构信息

Shandong Survey and Design Institute of Water Conservancy, Jinan, China.

College of Internet of Things, Hohai University, Changzhou, China.

出版信息

PLoS One. 2022 Jan 25;17(1):e0260466. doi: 10.1371/journal.pone.0260466. eCollection 2022.

Abstract

Binocular vision uses the parallax principle of the human eye to obtain 3D information of an object, which is widely used as an important means of acquiring 3D information for 3D reconstruction tasks. To improve the accuracy and efficiency of 3D reconstruction, we propose a 3D reconstruction method that combines second-order semiglobal matching, guided filtering and Delaunay triangulation. First, the existing second-order semiglobal matching method is improved, and the smoothness constraint of multiple angle directions is added to the matching cost to generate a more robust disparity map. Second, the 3D coordinates of all points are calculated by combining camera parameters and disparity maps to obtain the 3D point cloud, which is smoothed by guided filtering to remove noise points and retain details. Finally, a method to quickly locate the insertion point and accelerate Delaunay triangulation is proposed. The surface of the point cloud is reconstructed by Delaunay triangulation based on fast point positioning to improve the visibility of the 3D model. The proposed approach was evaluated using the Middlebury and KITTI datasets. The experimental results show that the proposed second-order semiglobal matching method has higher accuracy than other stereo matching methods and that the proposed Delaunay triangulation method based on fast point location requires less time than the original Delaunay triangulation.

摘要

双目视觉利用人眼的视差原理获取物体的 3D 信息,被广泛应用于 3D 重建任务中获取 3D 信息的重要手段。为了提高 3D 重建的准确性和效率,我们提出了一种结合二阶半全局匹配、引导滤波和 Delaunay 三角剖分的 3D 重建方法。首先,改进现有的二阶半全局匹配方法,在匹配代价中添加多视角平滑约束,生成更稳健的视差图。其次,结合相机参数和视差图计算所有点的 3D 坐标,得到 3D 点云,通过引导滤波对其进行平滑处理,去除噪声点并保留细节。最后,提出一种快速定位插入点并加速 Delaunay 三角剖分的方法。基于快速点定位的 Delaunay 三角剖分重建点云表面,提高 3D 模型的可视性。使用 Middlebury 和 KITTI 数据集对所提出的方法进行了评估。实验结果表明,所提出的二阶半全局匹配方法比其他立体匹配方法具有更高的准确性,并且基于快速点定位的 Delaunay 三角剖分方法比原始的 Delaunay 三角剖分方法所需时间更少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b31e/8789135/935f480cb732/pone.0260466.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验