Suppr超能文献

硅胶心脏三维表面重建与特征跟踪研究

Study on Reconstruction and Feature Tracking of Silicone Heart 3D Surface.

作者信息

Zhang Ziyan, Liu Yan, Tian Jiawei, Liu Shan, Yang Bo, Xiang Longhai, Yin Lirong, Zheng Wenfeng

机构信息

School of Innovation and Entrepreneurship, Xi'an Fanyi University, Xi'an 710105, China.

School of Automation, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

Sensors (Basel). 2021 Nov 14;21(22):7570. doi: 10.3390/s21227570.

Abstract

At present, feature-based 3D reconstruction and tracking technology is widely applied in the medical field. In minimally invasive surgery, the surgeon can achieve three-dimensional reconstruction through the images obtained by the endoscope in the human body, restore the three-dimensional scene of the area to be operated on, and track the motion of the soft tissue surface. This enables doctors to have a clearer understanding of the location depth of the surgical area, greatly reducing the negative impact of 2D image defects and ensuring smooth operation. In this study, firstly, the 3D coordinates of each feature point are calculated by using the parameters of the parallel binocular endoscope and the spatial geometric constraints. At the same time, the discrete feature points are divided into multiple triangles using the Delaunay triangulation method. Then, the 3D coordinates of feature points and the division results of each triangle are combined to complete the 3D surface reconstruction. Combined with the feature matching method based on convolutional neural network, feature tracking is realized by calculating the three-dimensional coordinate changes of the same feature point in different frames. Finally, experiments are carried out on the endoscope image to complete the 3D surface reconstruction and feature tracking.

摘要

目前,基于特征的三维重建与跟踪技术在医学领域得到了广泛应用。在微创手术中,外科医生可以通过人体内部内窥镜获取的图像实现三维重建,还原手术区域的三维场景,并跟踪软组织表面的运动。这使医生能够更清楚地了解手术区域的位置深度,极大地减少二维图像缺陷的负面影响,确保手术顺利进行。在本研究中,首先利用平行双目内窥镜的参数和空间几何约束计算每个特征点的三维坐标。同时,采用德劳内三角剖分方法将离散的特征点划分为多个三角形。然后,将特征点的三维坐标与每个三角形的划分结果相结合,完成三维表面重建。结合基于卷积神经网络的特征匹配方法,通过计算同一特征点在不同帧中的三维坐标变化来实现特征跟踪。最后,在内窥镜图像上进行实验,完成三维表面重建和特征跟踪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a28c/8619637/3a976a6cefab/sensors-21-07570-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验