Suppr超能文献

基于多维特征预测用户遭受网络钓鱼的倾向。

Predicting User Susceptibility to Phishing Based on Multidimensional Features.

机构信息

School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China.

School of Computer Science, Beijing University of Technology, Beijing 100124, China.

出版信息

Comput Intell Neurosci. 2022 Jan 17;2022:7058972. doi: 10.1155/2022/7058972. eCollection 2022.

Abstract

While antiphishing techniques have evolved over the years, phishing remains one of the most threatening attacks on current network security. This is because phishing exploits one of the weakest links in a network system-people. The purpose of this research is to predict the possible phishing victims. In this study, we propose the multidimensional phishing susceptibility prediction model (MPSPM) to implement the prediction of user phishing susceptibility. We constructed two types of emails: legitimate emails and phishing emails. We gathered 1105 volunteers to join our experiment by recruiting volunteers. We sent these emails to volunteers and collected their demographic, personality, knowledge experience, security behavior, and cognitive processes by means of a questionnaire. We then applied 7 supervised learning methods to classify these volunteers into two categories using multidimensional features: susceptible and nonsusceptible. The experimental results indicated that some machine learning methods have high accuracy in predicting user phishing susceptibility, with a maximum accuracy rate of 89.04%. We conclude our study with a discussion of our findings and their future implications.

摘要

虽然反网络钓鱼技术近年来已经发展,网络钓鱼仍然是当前网络安全最具威胁的攻击之一。这是因为网络钓鱼利用了网络系统中最薄弱的环节之一——人。本研究旨在预测可能的网络钓鱼受害者。在这项研究中,我们提出了多维网络钓鱼易感性预测模型 (MPSPM),以实现用户网络钓鱼易感性的预测。我们构建了两种类型的电子邮件:合法电子邮件和网络钓鱼电子邮件。我们通过招募志愿者,共召集了 1105 名志愿者参加我们的实验。我们向志愿者发送这些电子邮件,并通过问卷收集他们的人口统计学、个性、知识经验、安全行为和认知过程。然后,我们应用 7 种监督学习方法,使用多维特征将这些志愿者分为两类:易感和不易感。实验结果表明,一些机器学习方法在预测用户网络钓鱼易感性方面具有很高的准确性,最高准确率达到 89.04%。最后,我们讨论了我们的发现及其未来意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c22/8786481/e10df93383ec/CIN2022-7058972.001.jpg

相似文献

1
Predicting User Susceptibility to Phishing Based on Multidimensional Features.
Comput Intell Neurosci. 2022 Jan 17;2022:7058972. doi: 10.1155/2022/7058972. eCollection 2022.
2
How personal characteristics impact phishing susceptibility: The mediating role of mail processing.
Appl Ergon. 2021 Nov;97:103526. doi: 10.1016/j.apergo.2021.103526. Epub 2021 Jul 8.
3
So Many Phish, So Little Time: Exploring Email Task Factors and Phishing Susceptibility.
Hum Factors. 2022 Dec;64(8):1379-1403. doi: 10.1177/0018720821999174. Epub 2021 Apr 9.
4
Susceptibility to Spear-Phishing Emails: Effects of Internet User Demographics and Email Content.
ACM Trans Comput Hum Interact. 2019 Sep;26(5). doi: 10.1145/3336141.
5
Personalized persuasion: Quantifying susceptibility to information exploitation in spear-phishing attacks.
Appl Ergon. 2023 Apr;108:103908. doi: 10.1016/j.apergo.2022.103908. Epub 2022 Nov 17.
6
Assessment of Employee Susceptibility to Phishing Attacks at US Health Care Institutions.
JAMA Netw Open. 2019 Mar 1;2(3):e190393. doi: 10.1001/jamanetworkopen.2019.0393.
7
The Phishing Email Suspicion Test (PEST) a lab-based task for evaluating the cognitive mechanisms of phishing detection.
Behav Res Methods. 2021 Jun;53(3):1342-1352. doi: 10.3758/s13428-020-01495-0. Epub 2020 Oct 19.
8
Who Gets Caught in the Web of Lies?: Understanding Susceptibility to Phishing Emails, Fake News Headlines, and Scam Text Messages.
Hum Factors. 2024 Jun;66(6):1742-1753. doi: 10.1177/00187208231173263. Epub 2023 May 1.
9
A comprehensive survey of AI-enabled phishing attacks detection techniques.
Telecommun Syst. 2021;76(1):139-154. doi: 10.1007/s11235-020-00733-2. Epub 2020 Oct 23.
10
The role of cue utilization in the detection of phishing emails.
Appl Ergon. 2023 Jan;106:103887. doi: 10.1016/j.apergo.2022.103887. Epub 2022 Aug 26.

引用本文的文献

1
Security of Cryptocurrencies: A View on the State-of-the-Art Research and Current Developments.
Sensors (Basel). 2023 Mar 15;23(6):3155. doi: 10.3390/s23063155.

本文引用的文献

1
We will make you like our research: The development of a susceptibility-to-persuasion scale.
PLoS One. 2018 Mar 15;13(3):e0194119. doi: 10.1371/journal.pone.0194119. eCollection 2018.
2
A Protection Motivation Theory of Fear Appeals and Attitude Change1.
J Psychol. 1975 Sep;91(1):93-114. doi: 10.1080/00223980.1975.9915803.
3
Phishing for suitable targets in the Netherlands: routine activity theory and phishing victimization.
Cyberpsychol Behav Soc Netw. 2014 Aug;17(8):551-5. doi: 10.1089/cyber.2014.0008.
4
A practitioner's guide to persuasion: an overview of 15 selected persuasion theories, models and frameworks.
Patient Educ Couns. 2009 Mar;74(3):309-17. doi: 10.1016/j.pec.2008.12.003. Epub 2009 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验