School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
Acc Chem Res. 2022 Feb 15;55(4):551-564. doi: 10.1021/acs.accounts.1c00691. Epub 2022 Jan 27.
The necessity to scrutinize more and more biological molecules and interactions both in solution and on the cellular level has led to an increasing demand for sensitive and specific multiplexed diagnostic analysis. Photoluminescence (PL) detection is ideally suited for multiplexed biosensing and bioimaging because it is rapid and sensitive and there is an almost unlimited choice of fluorophores that provide a large versatility of photophysical properties, including PL intensities, spectra, and lifetimes.The most frequently used technique to detect multiple parameters from a single sample is spectral (or color) multiplexing with different fluorophores, such as organic dyes, fluorescent proteins, quantum dots, or lanthanide nanoparticles and complexes. In conventional PL biosensing approaches, each fluorophore requires a distinct detection channel and excitation wavelength. This drawback can be overcome by Förster resonance energy transfer (FRET) from lanthanide donors to other fluorophore acceptors. The lanthanides' multiple and spectrally narrow emission bands over a broad spectral range can overlap with several different acceptors at once, thereby allowing FRET from one donor to multiple acceptors. The lanthanides' extremely long PL lifetimes provide two important features. First, time-gated (TG) detection allows for efficient suppression of background fluorescence from the biological environment or directly excited acceptors. Second, temporal multiplexing, for which the PL lifetimes are adjusted by the interaction with the FRET acceptor, can be used to determine specific biomolecules and/or their conformation distinct PL decays. The high signal-to-background ratios, reproducible and precise ratiometric and homogeneous (washing-free) sensing formats, and higher-order multiplexing capabilities of lanthanide-based TG-FRET have resulted in significant advances in the analysis of biomolecular recognition. Applications range from fundamental analysis of biomolecular interactions and conformations to high-throughput and point-of-care diagnostics and DNA sequencing to advanced optical encoding, using both liquid and solid samples and , , and detection with high sensitivity and selectivity.In this Account, we discuss recent advances in lanthanide-based TG-FRET for the development and application of advanced immunoassays, nucleic acid sensing, and fluorescence imaging. In addition to the different spectral and temporal multiplexing approaches, we highlight the importance of the careful design and combination of different biological, organic, and inorganic molecules and nanomaterials for an adjustable FRET donor-acceptor distance that determines the ultimate performance of the diagnostic assays and conformational sensors in their physiological environment. We conclude by sharing our vision on how progress in the development of new sensing concepts, material combinations, and instrumentation can further advance TG-FRET multiplexing and accelerate its translation into routine clinical practice and the investigation of challenging biological systems.
越来越多的生物分子和相互作用需要在溶液和细胞水平上进行分析,这导致对灵敏和特异的多重诊断分析的需求不断增加。光致发光(PL)检测非常适合于多重生物传感和生物成像,因为它快速且灵敏,并且有几乎无限的荧光团可供选择,这些荧光团提供了很大的光物理性质的多功能性,包括 PL 强度、光谱和寿命。从单个样品中检测多个参数的最常用技术是使用不同荧光团的光谱(或颜色)多重化,例如有机染料、荧光蛋白、量子点或镧系纳米粒子和配合物。在传统的 PL 生物传感方法中,每个荧光团都需要一个独特的检测通道和激发波长。这个缺点可以通过镧系供体到其他荧光团受体的Förster 共振能量转移(FRET)来克服。镧系元素在宽光谱范围内的多个和光谱狭窄的发射带可以与多个不同的受体同时重叠,从而允许一个供体向多个受体进行 FRET。镧系元素的超长 PL 寿命提供了两个重要的特点。首先,时间门控(TG)检测允许有效地抑制生物环境或直接激发的受体的背景荧光。其次,时间复用,其中 PL 寿命通过与 FRET 受体的相互作用来调整,可以用于确定特定的生物分子及其构象的独特 PL 衰减。基于镧系元素的 TG-FRET 的高信号与背景比、可重复且精确的比率和均相(免洗涤)传感格式以及更高阶的多重化能力,在生物分子识别的分析中取得了显著进展。应用范围从生物分子相互作用和构象的基础分析到高通量和即时诊断以及 DNA 测序,再到使用液体和固体样品的高级光学编码,具有高灵敏度和选择性。在本报告中,我们讨论了基于镧系元素的 TG-FRET 在开发和应用高级免疫分析、核酸传感和荧光成像方面的最新进展。除了不同的光谱和时间多重化方法外,我们还强调了仔细设计和组合不同的生物、有机和无机分子和纳米材料的重要性,以实现可调谐的 FRET 供体-受体距离,这决定了诊断分析和构象传感器在生理环境中的最终性能。最后,我们分享了关于如何通过开发新的传感概念、材料组合和仪器的进展来进一步推进 TG-FRET 多重化并加速其转化为常规临床实践和对具有挑战性的生物系统的研究的看法。