Suppr超能文献

通过数学建模与分析洞察配体诱导二聚化的动力学

Insights into the dynamics of ligand-induced dimerisation via mathematical modelling and analysis.

作者信息

White C, Rottschäfer V, Bridge L J

机构信息

Swansea University, Swansea, UK.

Leiden University, Leiden, The Netherlands; University of Amsterdam, Amsterdam, The Netherlands.

出版信息

J Theor Biol. 2022 Apr 7;538:110996. doi: 10.1016/j.jtbi.2021.110996. Epub 2022 Jan 24.

Abstract

The vascular endothelial growth factor (VEGF) receptor (VEGFR) system plays a role in cancer and many other diseases. It is widely accepted that VEGFR receptors dimerise in response to VEGF binding. However, analysis of these mechanisms and their implications for drug development still requires further exploration. In this paper, we present a mathematical model representing the binding of VEGF to VEGFR and the subsequent ligand-induced dimerisation. A key factor in this work is the qualitative and quantitative effect of binding cooperativity, which describes the effect that the binding of a ligand to a receptor has on the binding of that ligand to a second receptor, and the dimerisation of these receptors. We analyse the ordinary differential equation system at equilibrium, giving analytical solutions for the total amount of ligand bound. For time-course dynamics, we use numerical methods to explore possible behaviours under various parameter regimes, while perturbation analysis is used to understand the intricacies of these behaviours. Our simulation results show an excellent fit to experimental data, towards validating the model.

摘要

血管内皮生长因子(VEGF)受体(VEGFR)系统在癌症和许多其他疾病中发挥作用。人们普遍认为,VEGFR受体会因VEGF结合而二聚化。然而,对这些机制及其对药物开发的影响进行分析仍需进一步探索。在本文中,我们提出了一个数学模型,该模型描述了VEGF与VEGFR的结合以及随后的配体诱导二聚化过程。这项工作的一个关键因素是结合协同性的定性和定量效应,它描述了配体与一个受体的结合对该配体与第二个受体的结合以及这些受体二聚化的影响。我们分析了平衡状态下的常微分方程组,给出了结合配体总量的解析解。对于时程动态,我们使用数值方法探索各种参数条件下可能的行为,同时使用微扰分析来理解这些行为的复杂性。我们的模拟结果与实验数据拟合良好,从而验证了该模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验