Suppr超能文献

严重发热伴血小板减少综合征住院患者发生重症的评分模型。

Scoring Model for Predicting the Occurrence of Severe Illness in Hospitalized Patients with Severe Fever with Thrombocytopenia Syndrome.

机构信息

Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, China.

Department of Infection, Shandong Provincial Public Health Clinical Center, China.

出版信息

Jpn J Infect Dis. 2022 Jul 22;75(4):382-387. doi: 10.7883/yoken.JJID.2021.716. Epub 2022 Jan 31.

Abstract

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever with high mortality. Severe cases progressed rapidly, with deaths occurring within 2 weeks. Therefore, constructing a model to predict disease progression among hospitalized patients plays an important role in clinical practice. The development cohort included 121 patients with SFTS, 25 with severe SFTS, and 96 with mild SFTS. Two of the 64 variables were independent risk factors, including neurological symptoms (odds ratio [OR], 12.915; 95% confidence interval [CI], 3.342-49.916; P < 0.001) and aspartate aminotransferase/alanine aminotransferase levels (OR, 1.891; 95% CI, 1.272-2.813; P = 0.002). The model's area under the curve (AUC) was 0.882 (95% CI: 0.808-0.956). The mean AUC value obtained from the internal validation was 0.883 (95% CI: 0.809-0.957). The AUC in the external validation cohort was 0.873 (95% CI: 0.775-0.972). This model can be used to identify severely ill patients as early as possible with high predictive value, stability, and repeatability. This model can help clinicians with their treatment plans.

摘要

严重发热伴血小板减少综合征(SFTS)是一种新兴的出血热,死亡率高。重症病例进展迅速,死亡发生在 2 周内。因此,构建一种能够预测住院患者疾病进展的模型对于临床实践具有重要意义。本研究纳入了 121 例 SFTS 患者,其中重症 25 例,轻症 96 例。64 个变量中有 2 个是独立的危险因素,包括神经系统症状(比值比[OR],12.915;95%置信区间[CI],3.342-49.916;P<0.001)和天冬氨酸氨基转移酶/丙氨酸氨基转移酶水平(OR,1.891;95%CI,1.272-2.813;P=0.002)。该模型的曲线下面积(AUC)为 0.882(95%CI:0.808-0.956)。内部验证得到的平均 AUC 值为 0.883(95%CI:0.809-0.957)。外部验证队列的 AUC 为 0.873(95%CI:0.775-0.972)。该模型能够尽早识别出重症患者,具有较高的预测价值、稳定性和可重复性。该模型有助于临床医生制定治疗计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验