Liu Yanan, Fan Lei, Wang Wencai, Song Hongxuan, Zhang Zhenghua, Liu Qian, Meng Zhongji, Li Shibo, Wang Hua, Zhou Shijun, Liu Wanjun, Xia Guomei, Duan Jianping, Guo Chunxia, Wang Lu, Xu Ling, Wang Tong, Li Hanxin, Zhang Xinyue, Xiang Tiandan, Liu Di, Yu Zujiang, Liu Yuliang, Wang Junzhong, Zheng Xin
Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People's Republic of China.
Emerg Microbes Infect. 2025 Dec;14(1):2498572. doi: 10.1080/22221751.2025.2498572. Epub 2025 Jun 19.
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that imposes a considerable medical burden. In this study, we enrolled 1,606 SFTS patients, developed and validated machine learning models for mortality prediction, and ultimately constructed a model consisting of six variables. The prediction model, UNION-SFTS, constructed using the multilayer perceptron (MLP) algorithm, achieved the best performance with an area under the curve (AUC) of 0.917, an accuracy of 0.905, and a precision of 0.795 on the internal validation set. Additionally, the model achieved an AUC of 0.883 on the prospective validation set and AUCs of 1.000, 0.927 and 0.905 on the three external validation sets, respectively. We developed a user-friendly web-based calculator for clinical use, available at http://175.178.66.58/english/. By utilizing the UNION-SFTS model, clinicians can promptly predict and monitor the disease severity and mortality risk of SFTS patients, enabling early intervention in severe cases and ultimately reduces patient mortality.
发热伴血小板减少综合征(SFTS)是一种新出现的传染病,带来了相当大的医疗负担。在本研究中,我们纳入了1606例SFTS患者,开发并验证了用于死亡率预测的机器学习模型,最终构建了一个由六个变量组成的模型。使用多层感知器(MLP)算法构建的预测模型UNION - SFTS在内部验证集上表现最佳,曲线下面积(AUC)为0.917,准确率为0.905,精确率为0.795。此外,该模型在前瞻性验证集上的AUC为0.883,在三个外部验证集上的AUC分别为1.000、0.927和0.905。我们开发了一个便于临床使用的基于网络的计算器,可在http://175.178.66.58/english/获取。通过使用UNION - SFTS模型,临床医生可以及时预测和监测SFTS患者的疾病严重程度和死亡风险,对重症病例进行早期干预,最终降低患者死亡率。