Suppr超能文献

基于神经网络的非轨道平台间激光链路快速捕获与跟踪方法。

A Neural Network-Based Method for Fast Capture and Tracking of Laser Links between Nonorbiting Platforms.

机构信息

National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.

出版信息

Comput Intell Neurosci. 2022 Jan 21;2022:9296770. doi: 10.1155/2022/9296770. eCollection 2022.

Abstract

In this paper, a neural network approach is used to conduct an in-depth study and analysis of the fast capture tracking method for laser links between nonorbiting platforms. The experimental platform of the convolutional neural network- (CNN-) based free-space optical communication (FSO) wavefront correction system is built indoors, and the wavefront distortion correction performance of the CNN-based wavefront correction method is investigated. The experimental results show that the coupling power loss can be reduced to small after the CNN method correction under weak and strong turbulence. The accuracy of the above model is verified by comparing the simulation data with the experimentally measured data, thus realizing the coordinate decoupling of the coarse aiming mechanism and weakening the influence of structural factors on the tracking accuracy of the system. The tracking correlation equation of the influence of beam far-field dynamic characteristics on the tracking stability of the link is established, and the correlation factor variance of beam far-field dynamic characteristics is used to provide a quantitative analysis method for the evaluation and prediction of the comprehensive performance of the link tracking stability. The influence of beam divergence angle, wavefront distortion, detector accuracy, and atmospheric turbulence disturbance on the correlation factor variance of beam far-field dynamic characteristics of laser link beacons is modelled, and the link tracking stability optimization method is proposed under the requirement of link tracking accuracy, which provides an effective solution analysis method to realize the improvement of laser link tracking stability.

摘要

本文采用神经网络方法,对非轨道平台间激光链路的快速捕获跟踪方法进行了深入研究和分析。基于卷积神经网络 (CNN) 的自由空间光通信 (FSO) 波前校正系统的实验平台在室内搭建,研究了基于 CNN 的波前校正方法的波前畸变校正性能。实验结果表明,在弱湍流和强湍流条件下,CNN 方法校正后可以将耦合功率损耗降低到较小的值。通过将仿真数据与实验测量数据进行比较,验证了上述模型的准确性,从而实现了粗瞄机构的坐标解耦,减弱了结构因素对系统跟踪精度的影响。建立了光束远场动态特性对链路跟踪稳定性影响的跟踪相关方程,并采用光束远场动态特性相关因子方差为链路跟踪稳定性的综合性能评估和预测提供了定量分析方法。对光束发散角、波前失真、探测器精度和大气湍流干扰对激光链路信标光束远场动态特性相关因子方差的影响进行了建模,并在链路跟踪精度要求下提出了链路跟踪稳定性优化方法,为实现激光链路跟踪稳定性的提高提供了有效的解决方案分析方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be04/8799350/2d6f705274ae/CIN2022-9296770.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验