用光场显微镜和深度学习实时重建生物动力学的体积重建。

Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning.

机构信息

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.

Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

Nat Methods. 2021 May;18(5):551-556. doi: 10.1038/s41592-021-01058-x. Epub 2021 Feb 11.

Abstract

Light-field microscopy has emerged as a technique of choice for high-speed volumetric imaging of fast biological processes. However, artifacts, nonuniform resolution and a slow reconstruction speed have limited its full capabilities for in toto extraction of dynamic spatiotemporal patterns in samples. Here, we combined a view-channel-depth (VCD) neural network with light-field microscopy to mitigate these limitations, yielding artifact-free three-dimensional image sequences with uniform spatial resolution and high-video-rate reconstruction throughput. We imaged neuronal activities across moving Caenorhabditis elegans and blood flow in a beating zebrafish heart at single-cell resolution with volumetric imaging rates up to 200 Hz.

摘要

光场显微镜已成为高速大容量成像快速生物过程的首选技术。然而,伪影、不均匀的分辨率和较慢的重建速度限制了其在整体提取样品中动态时空模式的全部能力。在这里,我们将视图通道深度(VCD)神经网络与光场显微镜相结合,以减轻这些限制,生成无伪影的三维图像序列,具有均匀的空间分辨率和高视频速率的重建吞吐量。我们以高达 200 Hz 的体积成像速率,以单细胞分辨率对移动秀丽隐杆线虫的神经元活动和斑马鱼跳动心脏中的血流进行成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea1f/8107123/2bbc507768be/nihms-1660945-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索