Suppr超能文献

鼠气管整体血管和淋巴管成像。

Imaging Blood Vessels and Lymphatics in Mouse Trachea Wholemounts.

机构信息

Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco, CA, USA.

UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.

出版信息

Methods Mol Biol. 2022;2441:115-134. doi: 10.1007/978-1-0716-2059-5_10.

Abstract

Changes in blood vessels and lymphatics in health and disease are easier to understand and interpret when studied microscopically in three dimensions. The mouse trachea is a simple, yet powerful, and versatile model system in which to achieve this. We describe practical immunohistochemical methods for fluorescence and confocal microscopy of wholemounts of the mouse trachea to achieve this purpose in which the entire vasculature can be visualized from the organ level to the cellular and subcellular level. Blood vessels and lymphatics have highly stereotyped vascular architectures that repeat in arcades between the tracheal cartilages. Arterioles, capillaries, and venules can be easily identified for the blood vessels, while the lymphatics consist of initial lymphatics and collecting lymphatics. Even small abnormalities in either blood vessels or lymphatics can be noticed and evaluated in three dimensions. We and others have used the mouse trachea for examining in situ angiogenesis and lymphangiogenesis, vascular development and regression, vessel patency, differences in transgenic mice, and pathological changes, such as increased vascular permeability induced by inflammatory mediators.

摘要

在健康和疾病状态下,血管和淋巴管的变化,如果在显微镜下从三维角度进行研究,将更容易理解和解释。小鼠气管是一种简单但功能强大且用途广泛的模型系统,可实现这一目标。我们描述了用于荧光和共聚焦显微镜的整个小鼠气管的免疫组织化学方法,以达到此目的,其中可以从器官水平到细胞和亚细胞水平可视化整个脉管系统。血管和淋巴管具有高度刻板的血管结构,在气管软骨之间的拱廊中重复。小动脉、毛细血管和小静脉可以很容易地识别出血管,而淋巴管由初始淋巴管和收集淋巴管组成。即使是血管或淋巴管的微小异常也可以在三维空间中注意到并进行评估。我们和其他人已经使用小鼠气管来检查原位血管生成和淋巴管生成、血管发育和退化、血管通畅性、转基因小鼠的差异以及病理变化,例如炎症介质引起的血管通透性增加。

相似文献

1
Imaging Blood Vessels and Lymphatics in Mouse Trachea Wholemounts.
Methods Mol Biol. 2022;2441:115-134. doi: 10.1007/978-1-0716-2059-5_10.
2
Imaging Lymphatics in Mouse Lungs.
Methods Mol Biol. 2018;1846:161-180. doi: 10.1007/978-1-4939-8712-2_11.
3
Anatomy and function of the lymphatic vessels in the parietal pleura and their plasticity under inflammation in mice.
Microvasc Res. 2023 Jul;148:104546. doi: 10.1016/j.mvr.2023.104546. Epub 2023 May 23.
4
TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice.
J Clin Invest. 2009 Oct;119(10):2954-64. doi: 10.1172/JCI37626. Epub 2009 Sep 14.
5
Lymphangiogenesis by blind-ended vessel sprouting is concurrent with hemangiogenesis by vascular splitting.
Anat Rec A Discov Mol Cell Evol Biol. 2006 Mar;288(3):233-47. doi: 10.1002/ar.a.20309.
6
Lymphatic vessel density and function in experimental bladder cancer.
BMC Cancer. 2007 Nov 29;7:219. doi: 10.1186/1471-2407-7-219.
7
Fluorescent reporter transgenic mice for in vivo live imaging of angiogenesis and lymphangiogenesis.
Angiogenesis. 2018 Nov;21(4):677-698. doi: 10.1007/s10456-018-9629-2. Epub 2018 Jul 3.
8
Anatomy and pathology of lymphatic vessels under physiological and inflammatory conditions in the mouse diaphragm.
Microvasc Res. 2023 Jan;145:104438. doi: 10.1016/j.mvr.2022.104438. Epub 2022 Sep 16.
9
Transgenic overexpression of interleukin-1β induces persistent lymphangiogenesis but not angiogenesis in mouse airways.
Am J Pathol. 2013 Apr;182(4):1434-47. doi: 10.1016/j.ajpath.2012.12.003. Epub 2013 Feb 4.

引用本文的文献

2
Regional specialization within the mammalian respiratory immune system.
Trends Immunol. 2024 Nov;45(11):871-891. doi: 10.1016/j.it.2024.09.011. Epub 2024 Oct 21.
3
Piezo1-Regulated Mechanotransduction Controls Flow-Activated Lymphatic Expansion.
Circ Res. 2022 Jul 8;131(2):e2-e21. doi: 10.1161/CIRCRESAHA.121.320565. Epub 2022 Jun 14.

本文引用的文献

1
Endothelial Hypoxia-Inducible Factor-2α Is Required for the Maintenance of Airway Microvasculature.
Circulation. 2019 Jan 22;139(4):502-517. doi: 10.1161/CIRCULATIONAHA.118.036157.
2
Rapamycin reversal of VEGF-C-driven lymphatic anomalies in the respiratory tract.
JCI Insight. 2017 Aug 17;2(16). doi: 10.1172/jci.insight.90103.
3
Pulmonary lymphangiectasia resulting from vascular endothelial growth factor-C overexpression during a critical period.
Circ Res. 2014 Feb 28;114(5):806-22. doi: 10.1161/CIRCRESAHA.114.303119. Epub 2014 Jan 15.
4
VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd.
J Exp Med. 2012 Jul 2;209(7):1363-77. doi: 10.1084/jem.20111343. Epub 2012 Jun 11.
6
Rapid remodeling of airway vascular architecture at birth.
Dev Dyn. 2010 Sep;239(9):2354-66. doi: 10.1002/dvdy.22379.
7
Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling.
Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H547-59. doi: 10.1152/ajpheart.00616.2005. Epub 2005 Sep 19.
8
Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules.
Am J Physiol Heart Circ Physiol. 2006 Jan;290(1):H107-18. doi: 10.1152/ajpheart.00542.2005. Epub 2005 Aug 26.
9
Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation.
J Clin Invest. 2005 Feb;115(2):247-57. doi: 10.1172/JCI22037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验