Suppr超能文献

用于活体成像血管生成和淋巴管生成的荧光报告基因转基因小鼠。

Fluorescent reporter transgenic mice for in vivo live imaging of angiogenesis and lymphangiogenesis.

机构信息

Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.

Department of Stem Cells and Human Disease Models, Shiga University of Medical Science, Otsu, Japan.

出版信息

Angiogenesis. 2018 Nov;21(4):677-698. doi: 10.1007/s10456-018-9629-2. Epub 2018 Jul 3.

Abstract

The study of lymphangiogenesis is an emerging science that has revealed the lymphatic system as a central player in many pathological conditions including cancer metastasis, lymphedema, and organ graft rejection. A thorough understanding of the mechanisms of lymphatic growth will play a key role in the development of therapeutic strategies against these conditions. Despite the known potential of this field, the study of lymphatics has historically lagged behind that of hemangiogenesis. Until recently, significant strides in lymphatic studies were impeded by a lack of lymphatic-specific markers and suitable experimental models compared to those of the more immediately visible blood vasculature. Lymphangiogenesis has also been shown to be a key phenomenon in developmental biological processes, such as cell proliferation, guided migration, differentiation, and cell-to-cell communication, making lymphatic-specific visualization techniques highly desirable and desperately needed. Imaging modalities including immunohistochemistry and in situ hybridization are limited by the need to sacrifice animal models for tissue harvesting at every experimental time point. Moreover, the processes of mounting and staining harvested tissues may introduce artifacts that can confound results. These traditional methods for investigating lymphatic and blood vasculature are associated with several problems including animal variability (e.g., between mice) when replicating lymphatic growth environments and the cost concerns of prolonged, labor-intensive studies, all of which complicate the study of dynamic lymphatic processes. With the discovery of lymphatic-specific markers, researchers have been able to develop several lymphatic and blood vessel-specific, promoter-driven, fluorescent-reporter transgenic mice for visualization of lymphatics in vivo and in vitro. For instance, GFP, mOrange, tdTomato, and other fluorescent proteins can be expressed under control of a lymphatic-specific marker like Prospero-related homeobox 1 (Prox1), which is a highly conserved transcription factor for determining embryonic organogenesis in vertebrates that is implicated in lymphangiogenesis as well as several human cancers. Importantly, Prox1-null mouse embryos develop without lymphatic vessels. In human adults, Prox1 maintains lymphatic endothelial cells and upregulates proteins associated with lymphangiogenesis (e.g., VEGFR-3) and downregulates angiogenesis-associated gene expression (e.g., STAT6). To visualize lymphatic development in the context of angiogenesis, dual fluorescent-transgenic reporters, like Prox1-GFP/Flt1-DsRed mice, have been bred to characterize lymphatic and blood vessels simultaneously in vivo. In this review, we discuss the trends in lymphatic visualization and the potential usage of transgenic breeds in hemangiogenesis and lymphangiogenesis research to understand spatial and temporal correlations between vascular development and pathological progression.

摘要

淋巴管生成的研究是一门新兴科学,它揭示了淋巴管系统在许多病理状况中起着核心作用,包括癌症转移、淋巴水肿和器官移植排斥。对淋巴管生长机制的深入了解将在开发针对这些疾病的治疗策略方面发挥关键作用。尽管该领域具有已知的潜力,但与更直观的血管生成相比,淋巴管的研究历史一直滞后。直到最近,与更易于观察的血液脉管系统相比,淋巴管研究的显著进展受到缺乏淋巴管特异性标志物和合适的实验模型的阻碍。淋巴管生成也被证明是细胞增殖、导向迁移、分化和细胞间通讯等发育生物学过程中的关键现象,这使得淋巴管特异性可视化技术非常理想和急需。包括免疫组织化学和原位杂交在内的成像方式受到需要在每个实验时间点牺牲动物模型进行组织收获的限制。此外,收获组织的安装和染色过程可能会引入混淆结果的伪影。这些用于研究淋巴管和血管的传统方法存在几个问题,包括在复制淋巴管生长环境时动物的变异性(例如,小鼠之间)以及长期、劳动密集型研究的成本问题,所有这些都使动态淋巴管过程的研究变得复杂。随着淋巴管特异性标志物的发现,研究人员已经能够开发几种淋巴管和血管特异性、启动子驱动、荧光报告转基因小鼠,用于体内和体外淋巴管的可视化。例如,GFP、mOrange、tdTomato 和其他荧光蛋白可以在淋巴管特异性标志物(如 Prospero 相关同源盒 1(Prox1))的控制下表达,Prox1 是一种高度保守的转录因子,决定脊椎动物的胚胎器官发生,它与淋巴管生成以及几种人类癌症有关。重要的是,Prox1 缺失的小鼠胚胎没有淋巴管。在人类成年中,Prox1 维持淋巴管内皮细胞,并上调与淋巴管生成相关的蛋白质(例如,VEGFR-3),下调与血管生成相关的基因表达(例如,STAT6)。为了在血管生成的背景下观察淋巴管的发育,已经培育了双荧光转基因报告小鼠,例如 Prox1-GFP/Flt1-DsRed 小鼠,以在体内同时对淋巴管和血管进行特征化。在这篇综述中,我们讨论了淋巴管可视化的趋势以及在血管生成和淋巴管生成研究中使用转基因品种的潜力,以了解血管发育和病理进展之间的时空相关性。

相似文献

1
Fluorescent reporter transgenic mice for in vivo live imaging of angiogenesis and lymphangiogenesis.
Angiogenesis. 2018 Nov;21(4):677-698. doi: 10.1007/s10456-018-9629-2. Epub 2018 Jul 3.
2
Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis.
Angiogenesis. 2017 Nov;20(4):581-598. doi: 10.1007/s10456-017-9572-7. Epub 2017 Aug 9.
3
Quantification of Angiogenesis and Lymphangiogenesis in the Dual ex vivo Aortic and Thoracic Duct Assay.
Protein Pept Lett. 2020;27(1):30-40. doi: 10.2174/0929866526666190925145842.
4
Simultaneous in vivo imaging of blood and lymphatic vessel growth in Prox1-GFP/Flk1::myr-mCherry mice.
FEBS J. 2015 Apr;282(8):1458-1467. doi: 10.1111/febs.13234. Epub 2015 Mar 6.
5
A transgenic Prox1-Cre-tdTomato reporter mouse for lymphatic vessel research.
PLoS One. 2015 Apr 7;10(4):e0122976. doi: 10.1371/journal.pone.0122976. eCollection 2015.
6
Lymphatic vessel function in head and neck inflammation.
Lymphat Res Biol. 2013 Sep;11(3):187-92. doi: 10.1089/lrb.2013.0013.
8
Vegfr3-tdTomato, a reporter mouse for microscopic visualization of lymphatic vessel by multiple modalities.
PLoS One. 2021 Sep 20;16(9):e0249256. doi: 10.1371/journal.pone.0249256. eCollection 2021.

引用本文的文献

1
Lymphatic Metastasis of Esophageal Squamous Cell Carcinoma: The Role of NRF2 and Therapeutic Strategies.
Cancers (Basel). 2025 May 31;17(11):1853. doi: 10.3390/cancers17111853.
2
Multimerized epitope tags for high-sensitivity protein detection.
G3 (Bethesda). 2025 Jun 4;15(6). doi: 10.1093/g3journal/jkaf070.
3
Chick Chorioallantoic Membrane as an in vivo Model for the Study of Angiogenesis and Lymphangiogenesis.
J Vasc Res. 2025;62(2):109-120. doi: 10.1159/000542875. Epub 2024 Dec 20.
4
A history-dependent integrase recorder of plant gene expression with single-cell resolution.
Nat Commun. 2024 Oct 30;15(1):9362. doi: 10.1038/s41467-024-53716-1.
5
New targets of nascent lymphatic vessels in ocular diseases.
Front Physiol. 2024 Mar 11;15:1374627. doi: 10.3389/fphys.2024.1374627. eCollection 2024.
7
Molecular analysis of vascular gene expression.
Res Pract Thromb Haemost. 2022 May 19;6(4):e12718. doi: 10.1002/rth2.12718. eCollection 2022 May.
8
Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task.
Biology (Basel). 2022 Mar 10;11(3):419. doi: 10.3390/biology11030419.
9
In Vitro, In Vivo, and In Silico Models of Lymphangiogenesis in Solid Malignancies.
Cancers (Basel). 2022 Mar 16;14(6):1525. doi: 10.3390/cancers14061525.

本文引用的文献

1
Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies-A review.
Med Res Rev. 2018 Sep;38(6):1769-1798. doi: 10.1002/med.21496. Epub 2018 Mar 12.
2
Visualization of endothelial cell cycle dynamics in mouse using the Flt-1/eGFP-anillin system.
Angiogenesis. 2018 May;21(2):349-361. doi: 10.1007/s10456-018-9601-1. Epub 2018 Feb 7.
3
Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis.
Angiogenesis. 2017 Nov;20(4):581-598. doi: 10.1007/s10456-017-9572-7. Epub 2017 Aug 9.
5
Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine.
Nature. 2017 Jun 28;546(7660):676-680. doi: 10.1038/nature22977.
6
Novel Application of Red Fluorescent Protein (DsRed-Express) for the Study of Functional Dynamics of Nuclear Receptors.
J Fluoresc. 2017 Jul;27(4):1225-1231. doi: 10.1007/s10895-017-2109-z. Epub 2017 May 3.
8
Heterogeneity in the lymphatic vascular system and its origin.
Cardiovasc Res. 2016 Sep;111(4):310-21. doi: 10.1093/cvr/cvw175. Epub 2016 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验