Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
Phys Chem Chem Phys. 2022 Feb 9;24(6):3611-3617. doi: 10.1039/d1cp05457k.
The conformational preferences of peptides are strongly determined by hydrogen bonding interactions. Intermolecular solute-solvent interactions compete with intramolecular interactions, which typically stabilize the secondary structure of the peptide. The analysis of vibrational circular dichroism (VCD) spectra can give insights into solvation-induced changes in the conformational distribution of small peptides. Here we describe the VCD spectroscopic characterization of the model peptide Boc-Val-Phe-Pr in chloroform as representative for a weakly interacting solvent and dimethyl sulfoxide (DMSO-d) as a strongly hydrogen bonding solvent. We show that the conformational preferences of the peptide in chloroform are well-described by the computationally predicted distribution of the isolated molecule assuming only implicit solvation effects through a continuum solvation model. In order to simulate the spectra recorded in DMSO-d, solvation was accounted for explicitly by computed microsolvated structures containing one to three solvent molecules. A good match of the computed spectra with the experimental data is obtained by this method. Comparing the conformational distributions in deuterated chloroform-d and DMSO-d, structures with intramolecular hydrogen bonds such as the (δ,δ)-conformer family contribute to the conformational distribution only when there is no strong interaction with the solvent. This is in contrast to the results for the related Boc-Pro-Phe-Pr studied before, for which the intramolecular interaction was found to persist in DMSO-d. Furthermore, we discuss the influence of hydrogen bonding to different numbers of solvent molecules on the spectral signatures and show that the structure of the peptide in DMSO-d is best described as a mixture of twofold-solvated (δ,β)- and threefold-solvated (β,β)-conformers.
肽的构象偏好强烈取决于氢键相互作用。分子间溶质-溶剂相互作用与分子内相互作用竞争,后者通常稳定肽的二级结构。振动圆二色性(VCD)光谱的分析可以深入了解溶剂化诱导的小肽构象分布变化。在这里,我们描述了模型肽 Boc-Val-Phe-Pr 在氯仿中的 VCD 光谱特征,氯仿代表弱相互作用溶剂,二甲基亚砜(DMSO-d)代表强氢键溶剂。我们表明,在氯仿中,肽的构象偏好可以通过仅考虑连续体溶剂化模型的隐含溶剂化效应来很好地描述计算预测的孤立分子分布来描述。为了模拟在 DMSO-d 中记录的光谱,通过包含一个到三个溶剂分子的计算微溶剂化结构来明确考虑溶剂化。通过这种方法,计算光谱与实验数据很好地匹配。比较氘代氯仿-d 和 DMSO-d 中的构象分布,当与溶剂没有强烈相互作用时,具有分子内氢键的结构,例如(δ,δ)-构象家族,仅对构象分布有贡献。这与之前研究的相关 Boc-Pro-Phe-Pr 的结果形成对比,在该结果中发现,分子内相互作用在 DMSO-d 中仍然存在。此外,我们讨论了氢键与不同数目的溶剂分子相互作用对光谱特征的影响,并表明在 DMSO-d 中,肽的结构最好描述为二倍溶剂化(δ,β)-和三倍溶剂化(β,β)-构象的混合物。