Camparo James
Physical Sciences Laboratories, The Aerospace Corporation, 2380 E. El Segundo Blvd., El Segundo, California 90245, USA.
J Chem Phys. 2022 Jan 28;156(4):044303. doi: 10.1063/5.0075939.
We consider the origin of nonlinear collision shifts for the 0-0 hyperfine transition in alkali/noble-gas systems due to van der Waals molecule formation. Developing a semi-empirical model, we describe the shift as arising from three fundamental interactions: (1) a fractional change in the alkali's valence electron density at the alkali nucleus, η, which affects the hyperfine contact term; (2) a mixing of p-wavefunction character into the alkali ground state (characterized by the probability for p-state character appearing in the perturbed wavefunction ξ ), which gives rise to an electric quadrupole term in the ground-state hyperfine splitting; and (3) an interaction of the alkali's valence electron with the magnetic field produced by molecular rotation, characterized by a magnetic field strength B. In addition to these molecular parameters, the model also depends on the formation rate of van der Waals molecules, kP, and the breakup rate of the molecules, kP, where P is the noble-gas pressure. Fitting the model to the Rb/Xe and Rb/Xe experimental data of McGuyer and co-workers (and taking previously measured values for k and B), we find that η = 9 × 10, ξ = 5 × 10, and k = 2.9×10 s/Torr.
我们考虑了由于范德瓦尔斯分子形成,碱金属/稀有气体系统中0-0超精细跃迁的非线性碰撞频移的起源。通过建立一个半经验模型,我们将频移描述为由三种基本相互作用引起:(1) 碱金属原子核处碱金属价电子密度的分数变化η,它影响超精细接触项;(2) p波函数特征混入碱金属基态(由受扰波函数中p态特征出现的概率ξ表征),这在基态超精细分裂中产生一个电四极项;(3) 碱金属价电子与分子旋转产生的磁场的相互作用,由磁场强度B表征。除了这些分子参数外,该模型还取决于范德瓦尔斯分子的形成速率kP和分子的解离速率kP,其中P是稀有气体压力。将该模型与麦圭尔及其同事的Rb/Xe和Rb/Xe实验数据拟合(并采用先前测量的k和B值),我们发现η = 9×10,ξ = 5×10,且k = 2.9×10 s/Torr。