Markham G D
J Biol Chem. 1986 Feb 5;261(4):1507-9.
The structure of the binding site for the monovalent cation activator of S-adenosylmethionine (AdoMet) synthetase from Escherichia coli has been characterized by 205Tl NMR of enzyme-bound Tl+. The chemical shift of the enzyme-Tl+ complex is 176 ppm downfield from aquo Tl+, a shift which is typical only of Tl+ complexes with solely oxygen ligands. The 205Tl resonance shifts upfield to 85 ppm in the enzyme-Mg(II)-Tl+ complex, to 38 ppm in the enzyme-Tl+-AdoMet complex and to 34 ppm in the enzyme-Tl+-AdoMet-Mg(II) complex. The 205Tl chemical shift of enzyme-bound Tl+ was not altered by binding of either methionine, or the Mg(II)-ATP analog Mg(II)-adenyl-5'-yl imidodiphosphate, or Mg(II)-pyrophosphate to the enzyme-Tl+-Mg(II) complex. The NMR data suggest that the substrates or products of the enzyme do not coordinate to the monovalent cation activator and imply that monovalent cation activation results from alterations in protein conformation.