Suppr超能文献

基于模糊推理的磁悬浮球位置神经网络补偿控制。

Neural network compensation control of magnetic levitation ball position based on fuzzy inference.

机构信息

School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

出版信息

Sci Rep. 2022 Feb 2;12(1):1795. doi: 10.1038/s41598-022-05900-w.

Abstract

Aiming at the problem of poor transient performance of the control system caused by the control uncertainty of the undertrained neural network, a neural network compensation control method based on fuzzy inference is proposed in this paper. The method includes three control substructures: fuzzy inference block, neural network control block and basic control block. The fuzzy inference block adaptively adjusts the neural network compensation control quantity according to the control error and the error rate of change, and adds a dynamic adjustment factor to ensure the control quality at the initial stage of network learning or at the moment of signal transition. The neural network control block is composed of an identifier and a controller with the same network structure. After the identifier learns the dynamic inverse model of the controlled object online, its training parameters are dynamically copied to the controller for real-time compensation control. The basic control block uses a traditional PID controller to provide online learning samples for the neural network control block. The simulation and experimental results of the position control of the magnetic levitation ball show that the proposed method significantly reduces the overshoot and settling time of the control system without sacrificing the steady-state accuracy of neural network compensation control, and has good transient and steady-state performance and strong robustness simultaneously.

摘要

针对欠训练神经网络控制不确定性导致控制系统瞬态性能较差的问题,本文提出了一种基于模糊推理的神经网络补偿控制方法。该方法包括三个控制子结构:模糊推理块、神经网络控制块和基本控制块。模糊推理块根据控制误差和误差变化率自适应调整神经网络补偿控制量,并添加动态调整因子,以确保网络学习初期或信号转换时刻的控制质量。神经网络控制块由具有相同网络结构的标识符和控制器组成。标识符在线学习被控对象的动态逆模型后,其训练参数被动态复制到控制器中进行实时补偿控制。基本控制块使用传统的 PID 控制器为神经网络控制块提供在线学习样本。磁悬浮球位置控制的仿真和实验结果表明,所提出的方法在不牺牲神经网络补偿控制稳态精度的情况下,显著降低了控制系统的超调量和调整时间,同时具有良好的瞬态和稳态性能以及较强的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b6f/8810916/b03c7162dc8d/41598_2022_5900_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验