Suppr超能文献

使用田口法、邓氏法和混合支持向量回归模型对填充聚四氟乙烯复合材料的摩擦学行为进行优化与预测

Optimization and prediction of tribological behaviour of filled polytetrafluoroethylene composites using Taguchi Deng and hybrid support vector regression models.

作者信息

Ibrahim Musa Alhaji, Çamur Hüseyin, Savaş Mahmut A, Abba S I

机构信息

Mechanical of Engineering Department, Faculty of Engineering, Kano University of Science and Technology, Wudil KM 50, Kano, Gaya Road, Wudil P.M.B 3244, Kano, Kano, Nigeria.

Mechanical Engineering Department, Faculty of Engineering, Near East University, via Mersin 10, 99138, Nicosia, Turkey.

出版信息

Sci Rep. 2022 Jun 21;12(1):10393. doi: 10.1038/s41598-022-14629-5.

Abstract

This study presents optimization and prediction of tribological behaviour of filled polytetrafluoroethylene (PTFE) composites using hybrid Taguchi and support vector regression (SVR) models. To achieve the optimization, Taguchi Deng was employed considering multiple responses and process parameters relevant to the tribological behaviour. Coefficient of friction (µ) and specific wear rate (K) were measured using pin-on-disc tribometer. In this study, load, grit size, distance and speed were the process parameters. An L orthogonal array was applied for the Taguchi experimental design. A set of optimal parameters were obtained using the Deng approach for multiple responses of µ and K. Analysis of variance was performed to study the effect of individual parameters on the multiple responses To predict µ and Ks, SVR was coupled with novel Harris Hawks' optimization (HHO) and swarm particle optimization (PSO) forming SVR-HHO and SVR-PSO models respectively, were employed. Four model evaluation metrics were used to appraise the prediction accuracy of the models. Validation results revealed enhancement under optimal test conditions. Hybrid SVR models indicated superior prediction accuracy to single SVR model. Furthermore, SVR-HHO outperformed SVR-PSO model. It was found that Taguchi Deng, SVR-PSO and SVR-HHO models led to optimization and prediction with low cost and superior accuracy.

摘要

本研究提出了使用混合田口方法和支持向量回归(SVR)模型对填充聚四氟乙烯(PTFE)复合材料的摩擦学行为进行优化和预测。为实现优化,采用田口邓方法,考虑与摩擦学行为相关的多个响应和工艺参数。使用销盘摩擦磨损试验机测量摩擦系数(µ)和比磨损率(K)。在本研究中,载荷、磨粒尺寸、距离和速度为工艺参数。采用L正交阵列进行田口实验设计。使用邓方法针对µ和K的多个响应获得了一组最优参数。进行方差分析以研究各个参数对多个响应的影响。为预测µ和Ks,分别将SVR与新颖的哈里斯鹰优化算法(HHO)和粒子群优化算法(PSO)相结合,形成SVR-HHO和SVR-PSO模型。使用四个模型评估指标来评估模型的预测准确性。验证结果表明在最佳测试条件下有所提高。混合SVR模型显示出比单一SVR模型更高的预测准确性。此外,SVR-HHO的性能优于SVR-PSO模型。结果发现,田口邓方法、SVR-PSO和SVR-HHO模型能够以低成本和高精度实现优化和预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0913/9213422/ce96dfa3277b/41598_2022_14629_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验