Suppr超能文献

通过超声测量和混合法则预测组织成分

Prediction of tissue composition from ultrasonic measurements and mixture rules.

作者信息

Apfel R E

出版信息

J Acoust Soc Am. 1986 Jan;79(1):148-52. doi: 10.1121/1.393638.

Abstract

A methodology is presented for predicting the composition of tissues from measurements of the density, sound velocity, and acoustic nonlinear parameter, using mixture laws for the density, compressibility, and nonlinear parameter. It is shown that the mixture law for the nonlinear parameter plays an essential part in this methodology, which leads to the prediction of the volume fractions of water, protein, and fat in a given tissue. Data from the literature for solutions, blood, normal tissue, and cancerous tissue are investigated, and predicted fractions are consistent with tissue compositional information available in handbooks. More experimental work is needed with tissues of known composition in order to more fully test the proposed methodology.

摘要

本文提出了一种方法,该方法利用密度、声速和声学非线性参数的测量值,通过密度、压缩性和非线性参数的混合定律来预测组织的成分。结果表明,非线性参数的混合定律在该方法中起着至关重要的作用,从而可以预测给定组织中水、蛋白质和脂肪的体积分数。对文献中溶液、血液、正常组织和癌组织的数据进行了研究,预测的分数与手册中可用的组织成分信息一致。为了更全面地测试所提出的方法,需要对已知成分的组织进行更多的实验工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验