Suppr超能文献

用于自适应虚拟机放置的多资源协同优化

Multi-resource collaborative optimization for adaptive virtual machine placement.

作者信息

Li Zhihua, Pan Meini, Yu Lei

机构信息

Department of Computer Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.

IBM Research, Yorktown Heights, NY, USA.

出版信息

PeerJ Comput Sci. 2022 Jan 6;8:e852. doi: 10.7717/peerj-cs.852. eCollection 2022.

Abstract

The unbalanced resource utilization of physical machines (PMs) in cloud data centers could cause resource wasting, workload imbalance and even negatively impact quality of service (QoS). To address this problem, this paper proposes a multi-resource collaborative optimization control (MCOC) mechanism for virtual machine (VM) migration. It uses Gaussian model to adaptively estimate the probability that the running PMs are in the multi-resource utilization balance status. Given the estimated probability of the multi-resource utilization balance state, we propose effective selection algorithms for live VM migration between the source hosts and destination hosts, including adaptive Gaussian model-based VMs placement (AGM-VMP) algorithm and VMs consolidation (AGM-VMC) method. Experimental results show that the AGM-VMC method can effectively achieve load balance and significantly improve resource utilization, reduce data center energy consumption while guaranteeing QoS.

摘要

云数据中心中物理机(PM)资源利用不均衡会导致资源浪费、工作负载失衡,甚至对服务质量(QoS)产生负面影响。为解决此问题,本文提出一种用于虚拟机(VM)迁移的多资源协同优化控制(MCOC)机制。它使用高斯模型自适应估计运行中的物理机处于多资源利用平衡状态的概率。基于估计的多资源利用平衡状态概率,我们提出了源主机和目标主机之间实时VM迁移的有效选择算法,包括基于自适应高斯模型的VM放置(AGM-VMP)算法和VM合并(AGM-VMC)方法。实验结果表明,AGM-VMC方法能够有效实现负载均衡,显著提高资源利用率,降低数据中心能耗,同时保证QoS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验