Fang Xiaotian, Zhou Baozeng, Sun Nan, Fu Luqian, Wang Xiaocha
Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Phys Chem Chem Phys. 2022 Feb 16;24(7):4374-4383. doi: 10.1039/d1cp05135k.
As a new van der Waals ferromagnetic material, VI can be used to lift the valley degeneracy of transition metal dichalcogenides at the ' and points. Here, the electronic structure and magnetic anisotropy of the VI/MSe (M = W, Mo) heterostructures are studied. The VI/WSe heterostructure is semiconducting with a band gap of 0.26 eV, while the VI/MoSe heterostructure is metallic. Considering the spin-orbit-coupling, a maximum valley splitting of 3.1 meV appears in the VI/WSe heterostructure. The biaxial strain can tune the valley splitting and magnetic anisotropy of VI/MSe heterostructures. In the VI/WSe heterostructure, which has the most stable stacking, valley splitting can be increased from 1.8 meV at 4% compressive strain to 3.1 meV at 4% tensile strain. At a biaxial strain of -2% to 4%, the VI/WSe heterostructure maintains a small perpendicular magnetic anisotropy, while the VI/MoSe heterostructure shows in-plane magnetic anisotropy under different strains. The significantly tunable electronic structure and magnetic anisotropy under biaxial strain suggest that the VI/MSe heterostructures have potential applications in spintronic devices.
作为一种新型范德华铁磁材料,VI可用于消除过渡金属二硫属化物在Γ点和K点的能谷简并。在此,研究了VI/MSe(M = W,Mo)异质结构的电子结构和磁各向异性。VI/WSe异质结构是半导体,带隙为0.26 eV,而VI/MoSe异质结构是金属性的。考虑自旋轨道耦合,VI/WSe异质结构中出现了3.1 meV的最大能谷分裂。双轴应变可调节VI/MSe异质结构的能谷分裂和磁各向异性。在堆叠最稳定的VI/WSe异质结构中,能谷分裂可从4%压缩应变下的1.8 meV增加到4%拉伸应变下的3.1 meV。在-2%至4%的双轴应变下,VI/WSe异质结构保持较小的垂直磁各向异性,而VI/MoSe异质结构在不同应变下表现出面内磁各向异性。双轴应变下显著可调的电子结构和磁各向异性表明,VI/MSe异质结构在自旋电子器件中具有潜在应用。