Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Adv Sci (Weinh). 2022 Apr;9(10):e2105352. doi: 10.1002/advs.202105352. Epub 2022 Feb 3.
Catheters integrated with microcoils for electromagnetic steering under the high, uniform magnetic field within magnetic resonance (MR) scanners (3-7 Tesla) have enabled an alternative approach for active catheter operations. Achieving larger ranges of tip motion for Lorentz force-based steering have previously been dependent on using high power coupled with active cooling, bulkier catheter designs, or introducing additional microcoil sets along the catheter. This work proposes an alternative approach using a heat-mitigated design and actuation strategy for a magnetic resonance imaging (MRI)-driven microcatheter. A quad-configuration microcoil (QCM) design is introduced, allowing miniaturization of existing MRI-driven, Lorentz force-based catheters down to 1-mm diameters with minimal power consumption (0.44 W). Heating concerns are experimentally validated using noninvasive MRI thermometry. The Cosserat model is implemented within an MR scanner and results demonstrate a desired tip range up to 110° with 4° error. The QCM is used to validate the proposed model and power-optimized steering algorithm using an MRI-compatible neurovascular phantom and ex vivo kidney tissue. The power-optimized tip orientation controller conserves as much as 25% power regardless of the catheter's initial orientation. These results demonstrate the implementation of an MRI-driven, electromagnetic catheter steering platform for minimally invasive surgical applications without the need for camera feedback or manual advancement via guidewires. The incorporation of such system in clinics using the proposed design and actuation strategy can further improve the safety and reliability of future MRI-driven active catheter operations.
在磁共振(MR)扫描仪(3-7 特斯拉)内的高均匀磁场下,与微线圈集成的导管可实现电磁转向,为主动导管操作提供了一种替代方法。基于洛伦兹力的转向需要更大的尖端运动范围,以前一直依赖于使用高功率结合主动冷却、更大体积的导管设计,或在导管上引入额外的微线圈组。这项工作提出了一种使用热缓解设计和驱动策略的替代方法,用于磁共振成像(MRI)驱动的微导管。引入了一种四配置微线圈(QCM)设计,允许将现有的基于 MRI 的洛伦兹力驱动导管缩小到 1 毫米直径,同时消耗最小的功率(0.44 W)。使用非侵入性 MRI 测温法对加热问题进行了实验验证。Cosserat 模型在磁共振扫描仪中实现,结果表明,在 4°误差的情况下,期望的尖端范围可达 110°。使用 MRI 兼容的神经血管模型和离体肾脏组织,QCM 用于验证所提出的模型和功率优化的转向算法。无论导管的初始方向如何,功率优化的尖端方向控制器都可以节省多达 25%的功率。这些结果表明,在不需要摄像头反馈或通过导丝手动推进的情况下,实现了一种用于微创手术应用的 MRI 驱动电磁导管转向平台。在临床中采用所提出的设计和驱动策略,该系统可以进一步提高未来 MRI 驱动主动导管操作的安全性和可靠性。