Felix Bailey M, Young Olivia M, Andreou Jordi T, Portwood Nicholas, Barvenik Kieran J, Barnes Noah, Weiss Clifford R, Bailey Christopher R, Gandhi Dheeraj, Janowski Miroslaw, Brown Jeremy D, Tubaldi Eleonora, Fuge Mark, Krieger Axel, Sochol Ryan D
Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
IEEE Int Conf Soft Robot. 2024 Apr;2024:386-391. doi: 10.1109/robosoft60065.2024.10521948. Epub 2024 May 13.
A wide range of endovascular interventions rely on surgical tools such as guidewire-catheter systems for navigating through blood vessels to, for example, deliver embolic materials, stents, and/or therapeutic agents to target sites as well as biopsy tools (., forceps and punch needles) for medical diagnostics. In response to the difficulties in maneuvering such endovascular instruments safely and effectively to access intended sites in the body, researchers have developed an array of soft robotic surgical tools that harness fluidic (., pneumatic or hydraulic) actuation schemes to support on-demand steering and control. Despite considerable progress, scaling these tools down to the sizes required for medical procedures such as cerebral aneurysm treatment and liver chemoembolization have been hindered by manufacturing-induced constraints. To provide a pathway to overcome these miniaturization challenges, this work presents a novel additive manufacturing strategy for 3D microprinting integrated soft actuators directly atop multilumen microfluidic tubing "Two-Photon Direct Laser Writing (DLW)". As an exemplar, a two-actuator tip was 3D printed onto custom dual-lumen tubing-resulting in a system akin to a 1.5 French (Fr) guidewire with a steerable tip. Experimental results revealed independent actuator control the discretized lumens, with tip bending of approximately 60° under input pressures of 130 kPa hydraulic actuation. These results suggest that the presented strategy could be extended to achieve new classes of fluidically actuated soft robotic surgical tools at unprecedented length scales for emerging applications in minimally invasive surgery.
多种血管内介入手术依赖于手术工具,如导丝导管系统,用于在血管中导航,例如将栓塞材料、支架和/或治疗剂输送到目标部位,以及用于医学诊断的活检工具(如镊子和穿刺针)。为应对安全有效地操控此类血管内器械以进入体内预定部位的困难,研究人员开发了一系列软机器人手术工具,这些工具利用流体(如气动或液压)驱动方案来支持按需转向和控制。尽管取得了显著进展,但将这些工具缩小到诸如脑动脉瘤治疗和肝动脉化疗栓塞等医疗程序所需的尺寸,却受到制造带来的限制。为提供克服这些小型化挑战的途径,这项工作提出了一种新颖的增材制造策略,用于在多腔微流控管顶部直接3D微打印集成软致动器——“双光子直接激光写入(DLW)”。作为一个示例,一个双致动器尖端被3D打印到定制的双腔管上,从而形成一个类似于1.5法式(Fr)导丝且尖端可转向的系统。实验结果表明,离散的腔室可实现对致动器的独立控制,在液压驱动下,输入压力为130 kPa时,尖端弯曲约60°。这些结果表明,所提出的策略可以扩展,以在前所未有的长度尺度上实现新型的流体驱动软机器人手术工具,用于微创手术中的新兴应用。