Suppr超能文献

通过电化学自催化策略用单原子铂修饰钯纳米晶体用于高效甲酸电氧化

Modification of Palladium Nanocrystals with Single Atom Platinum via an Electrochemical Self-Catalysis Strategy for Efficient Formic Acid Electrooxidation.

作者信息

Li Jun, Liang Xiaosi, Cai Liying, Huang Shuke, Zhao Chenyang

机构信息

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China.

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518067, China.

出版信息

ACS Appl Mater Interfaces. 2022 Feb 16;14(6):8001-8009. doi: 10.1021/acsami.1c23228. Epub 2022 Feb 3.

Abstract

Single atom alloys (SAA) have recently drawn increased attention due to their unique structure, high atomic utilization, and fascinating catalytic performance. However, their controllable synthesis still presents a challenge. This study proposes an electrochemical self-catalysis (ESC) strategy to synthesize Pd@Pt/C SAA catalysts, that is, depositing Pt atoms on Pd nanocrystals through in situ decomposition of sodium formate. The relationship between composition and structure of Pd@Pt/C is distinguished through a combination of electrochemical analysis, sphere-corrected scanning transmission electron microscopy, and X-ray adsorption spectra. That relationship evolved from SAA to a sea-island structure and even a core-shell structure with composition-controllable atomic ratios, highlighting the great diversity and convenience of this method in nanostructure construction. The Pd@Pt/C SAA catalyst showed excellent catalytic activity to formic acid oxidation with a peak current density of 5.2 A/mg, which is about 18.6 times that of the commercial Pd/C. density functional theory calculations revealed that the enhanced activity was due to the "passivation" of Pd sites near the Pt single atoms, which attenuated the adsorption of CO. Based on electrochemical principles, this ESC strategy was also expanded to prepare a series of Pd-based SAA, including Pd-Au, Pd-Ir, and Pd-Bi.

摘要

单原子合金(SAA)由于其独特的结构、高原子利用率和迷人的催化性能,近年来受到了越来越多的关注。然而,它们的可控合成仍然是一个挑战。本研究提出了一种电化学自催化(ESC)策略来合成Pd@Pt/C SAA催化剂,即通过甲酸钠的原位分解在Pd纳米晶体上沉积Pt原子。通过电化学分析、球差校正扫描透射电子显微镜和X射线吸收光谱相结合的方法,区分了Pd@Pt/C的组成与结构之间的关系。这种关系从SAA演变为海岛结构,甚至是具有组成可控原子比的核壳结构,突出了该方法在纳米结构构建中的多样性和便利性。Pd@Pt/C SAA催化剂对甲酸氧化表现出优异的催化活性,峰值电流密度为5.2 A/mg,约为商业Pd/C的18.6倍。密度泛函理论计算表明,活性增强是由于Pt单原子附近的Pd位点“钝化”,减弱了CO的吸附。基于电化学原理,这种ESC策略还被扩展用于制备一系列Pd基SAA,包括Pd-Au、Pd-Ir和Pd-Bi。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验