Suppr超能文献

源自一维镍基金属有机框架的氮掺杂碳基质包裹的硒化镍纳米颗粒:一种用于析氢反应的高效且持久的电催化剂。

NiSe Nanoparticles Encapsulated in N-Doped Carbon Matrix Derived from a One-Dimensional Ni-MOF: An Efficient and Sustained Electrocatalyst for Hydrogen Evolution Reaction.

作者信息

Sahu Nachiketa, Das Jiban K, Behera J N

机构信息

School of Chemical Sciences, National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.

Homi Bhabha National Institute (HBNI), Mumbai 400094, India.

出版信息

Inorg Chem. 2022 Feb 14;61(6):2835-2845. doi: 10.1021/acs.inorgchem.1c03323. Epub 2022 Feb 3.

Abstract

The spherical-type NiSe nanoparticles encapsulated in a N-doped carbon (NC) matrix (NiSe-@NC, temperature () = 400-800 °C) are derived from a 1D Ni-MOF precursor of the formula [Ni(BPY)(DDE)] [(BPY = 2,2'-bipyridyl), (DDE = 4,4'-dicarboxy diphenyl ether)] via a facile solvothermal technique followed by annealing at different temperatures and selenylation strategies. The combined effect of a NC matrix and the Ni nanoparticles has been optimized during varied annealing processes with subsequent selenylation, leading to the formation of the series NiSe-400@NC, NiSe-500@NC, NiSe-600@NC, NiSe-700@NC, and NiSe-800@NC, respectively. The variation of annealing temperature plays a vital role in optimizing the catalytic behavior of the NiSe-@NCs. Among different high-temperature annealed products, NiSe-600@NC shows superior electrocatalytic performance because of the unique spherical-type morphology and higher specific surface area (57.95 m g) that provides a large number of electrochemical active sites. The synthesized material exhibits a lower overpotential of 196 mV to deliver 10 mA cm current density, a small Tafel slope of 45 mV dec for better surface kinetics, and outstanding durability in an acidic solution, respectively. Consequently, the post stability study of the used electrocatalyst gives insight into surface phase analysis. Therefore, we presume that the synthesized 1D MOF precursor derived NiSe nanoparticles encapsulated in a NC matrix has excellent potential to replace the noble-metal-based electrocatalyst for enhanced hydrogen evolution through simple water electrolysis.

摘要

封装在氮掺杂碳(NC)基质中的球形NiSe纳米颗粒(NiSe-@NC,温度()= 400 - 800 °C)是通过一种简便的溶剂热技术,由式[Ni(BPY)(DDE)]的一维Ni-MOF前驱体(BPY = 2,2'-联吡啶,DDE = 4,4'-二羧基二苯醚)制备而成,随后在不同温度下进行退火和硒化处理。在不同的退火过程及后续硒化过程中,对NC基质和Ni纳米颗粒的综合效应进行了优化,分别形成了系列NiSe-400@NC、NiSe-500@NC、NiSe-600@NC、NiSe-700@NC和NiSe-800@NC。退火温度的变化在优化NiSe-@NCs的催化行为中起着至关重要的作用。在不同的高温退火产物中,NiSe-600@NC由于其独特的球形形态和更高的比表面积(57.95 m g)提供了大量的电化学活性位点,表现出优异的电催化性能。合成材料在提供10 mA cm电流密度时具有196 mV的较低过电位、45 mV dec的小塔菲尔斜率以实现更好的表面动力学,以及在酸性溶液中具有出色的耐久性。因此,对使用过的电催化剂的后稳定性研究有助于进行表面相分析。因此,我们推测,合成的由一维MOF前驱体制备的封装在NC基质中的NiSe纳米颗粒具有优异的潜力,可通过简单的水电解替代基于贵金属的电催化剂以增强析氢反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验