Suppr超能文献

膜中 Q 半醌通过碳酸氢盐控制的光合作用 II 型的氧还原。

Bicarbonate-controlled reduction of oxygen by the Q semiquinone in Photosystem II in membranes.

机构信息

Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;

The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.

出版信息

Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi: 10.1073/pnas.2116063119.

Abstract

Photosystem II (PSII), the water/plastoquinone photo-oxidoreductase, plays a key energy input role in the biosphere. [Formula: see text], the reduced semiquinone form of the nonexchangeable quinone, is often considered capable of a side reaction with O, forming superoxide, but this reaction has not yet been demonstrated experimentally. Here, using chlorophyll fluorescence in plant PSII membranes, we show that O does oxidize [Formula: see text] at physiological O concentrations with a of 10 s. Superoxide is formed stoichiometrically, and the reaction kinetics are controlled by the accessibility of O to a binding site near [Formula: see text], with an apparent dissociation constant of 70 ± 20 µM. Unexpectedly, [Formula: see text] could only reduce O when bicarbonate was absent from its binding site on the nonheme iron (Fe) and the addition of bicarbonate or formate blocked the O-dependant decay of [Formula: see text] These results, together with molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations, indicate that electron transfer from [Formula: see text] to O occurs when the O is bound to the empty bicarbonate site on Fe A protective role for bicarbonate in PSII was recently reported, involving long-lived [Formula: see text] triggering bicarbonate dissociation from Fe [Brinkert , 113, 12144-12149 (2016)]. The present findings extend this mechanism by showing that bicarbonate release allows O to bind to Fe and to oxidize [Formula: see text] This could be beneficial by oxidizing [Formula: see text] and by producing superoxide, a chemical signal for the overreduced state of the electron transfer chain.

摘要

光系统 II(PSII)是水/质体醌光氧化还原酶,在生物圈中起着关键的能量输入作用。[化学式:见正文],是不可交换醌的还原半醌形式,通常被认为能够与 O 发生侧反应,形成超氧自由基,但这一反应尚未得到实验证明。在这里,我们使用植物 PSII 膜中的叶绿素荧光,表明在生理 O 浓度下,O 确实会以 10 s 的 氧化[化学式:见正文]。超氧自由基是按化学计量形成的,反应动力学受 O 接近[化学式:见正文]结合位点的可及性控制,表观离解常数为 70±20 µM。出乎意料的是,当[化学式:见正文]结合位点上没有碳酸氢盐时,它只能还原 O,并且碳酸氢盐或甲酸盐的添加会阻止[化学式:见正文]的 O 依赖衰减。这些结果,连同分子动力学模拟和混合量子力学/分子力学计算,表明当 O 结合到 Fe 上的空碳酸氢盐位点时,电子从[化学式:见正文]转移到 O 发生,[Brinkert,113,12144-12149(2016)]。最近有报道称,碳酸氢盐在 PSII 中具有保护作用,涉及长寿命[化学式:见正文]触发碳酸氢盐从 Fe 上的解离[Brinkert,113,12144-12149(2016)]。本研究结果通过表明碳酸氢盐的释放允许 O 结合到 Fe 并氧化[化学式:见正文],扩展了这一机制。这可能有利于氧化[化学式:见正文]并产生超氧自由基,超氧自由基是电子传递链过度还原状态的化学信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5270/8833163/8f5b27484c69/pnas.2116063119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验