Department of Radiology, 13875National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
Medical Informatics Section, QST Hospital, 454209National Institutes for Quantum Science and Technology, Chiba, Japan.
Acta Radiol. 2023 Jan;64(1):336-345. doi: 10.1177/02841851221076330. Epub 2022 Feb 4.
It is unclear whether deep-learning-based super-resolution technology (SR) or compressed sensing technology (CS) can accelerate magnetic resonance imaging (MRI) .
To compare SR accelerated images with CS images regarding the image similarity to reference 2D- and 3D gradient-echo sequence (GRE) brain MRI.
We prospectively acquired 1.3× and 2.0× faster 2D and 3D GRE images of 20 volunteers from the reference time by reducing the matrix size or increasing the CS factor. For SR, we trained the generative adversarial network (GAN), upscaling the low-resolution images to the reference images with twofold cross-validation. We compared the structural similarity (SSIM) index of accelerated images to the reference image. The rate of incorrect answers of a radiologist discriminating faster and reference image was used as a subjective image similarity (ISM) index.
The SR demonstrated significantly higher SSIM than the CS (SSIM=0.9993-0.999 vs. 0.9947-0.9986; < 0.001). In 2D GRE, it was challenging to discriminate the SR image from the reference image, compared to the CS (ISM index 40% vs. 17.5% in 1.3×; = 0.039 and 17.5% vs. 2.5% in 2.0×; = 0.034). In 3D GRE, the CS revealed a significantly higher ISM index than the SR (22.5% vs. 2.5%; = 0.011) in 2.0 × faster images. However, the ISM index was identical for the 2.0× CS and 1.3× SR (22.5% vs. 27.5%; = 0.62) with comparable time costs.
The GAN-based SR outperformed CS in image similarity with 2D GRE for MRI acceleration. In addition, CS was more advantageous in 3D GRE than SR.
目前尚不清楚基于深度学习的超分辨率技术(SR)或压缩感知技术(CS)是否可以加速磁共振成像(MRI)。
比较 SR 加速图像和 CS 图像与参考二维和三维梯度回波序列(GRE)脑 MRI 的图像相似性。
我们前瞻性地采集了 20 名志愿者的参考时间内的 1.3 倍和 2.0 倍加速的二维和三维 GRE 图像,通过减小矩阵大小或增加 CS 因子来实现。对于 SR,我们使用生成对抗网络(GAN)进行训练,通过两重交叉验证将低分辨率图像放大到参考图像。我们比较了加速图像和参考图像的结构相似性(SSIM)指数。放射科医生区分更快和参考图像的错误率被用作主观图像相似性(ISM)指数。
SR 的 SSIM 明显高于 CS(SSIM=0.9993-0.999 与 0.9947-0.9986; < 0.001)。在二维 GRE 中,与 CS 相比,SR 图像更难以与参考图像区分(1.3 倍时的 ISM 指数为 40% 与 17.5%; = 0.039 和 17.5% 与 2.5%; = 0.034)。在三维 GRE 中,在 2.0 倍加速图像中,CS 比 SR 显示出更高的 ISM 指数(22.5% 与 2.5%; = 0.011)。然而,在 2.0 倍 CS 和 1.3 倍 SR 时,ISM 指数相同(22.5% 与 27.5%; = 0.62),时间成本相当。
在二维 GRE 中,基于 GAN 的 SR 在 MRI 加速的图像相似性方面优于 CS。此外,CS 在三维 GRE 中比 SR 更具优势。