Suppr超能文献

基于生成对抗网络的脑 MRI 图像后处理超分辨率技术:与压缩感知的比较。

Generative adversarial network-based post-processed image super-resolution technology for accelerating brain MRI: comparison with compressed sensing.

机构信息

Department of Radiology, 13875National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.

Medical Informatics Section, QST Hospital, 454209National Institutes for Quantum Science and Technology, Chiba, Japan.

出版信息

Acta Radiol. 2023 Jan;64(1):336-345. doi: 10.1177/02841851221076330. Epub 2022 Feb 4.

Abstract

BACKGROUND

It is unclear whether deep-learning-based super-resolution technology (SR) or compressed sensing technology (CS) can accelerate magnetic resonance imaging (MRI) .

PURPOSE

To compare SR accelerated images with CS images regarding the image similarity to reference 2D- and 3D gradient-echo sequence (GRE) brain MRI.

MATERIAL AND METHODS

We prospectively acquired 1.3× and 2.0× faster 2D and 3D GRE images of 20 volunteers from the reference time by reducing the matrix size or increasing the CS factor. For SR, we trained the generative adversarial network (GAN), upscaling the low-resolution images to the reference images with twofold cross-validation. We compared the structural similarity (SSIM) index of accelerated images to the reference image. The rate of incorrect answers of a radiologist discriminating faster and reference image was used as a subjective image similarity (ISM) index.

RESULTS

The SR demonstrated significantly higher SSIM than the CS (SSIM=0.9993-0.999 vs. 0.9947-0.9986;  < 0.001). In 2D GRE, it was challenging to discriminate the SR image from the reference image, compared to the CS (ISM index 40% vs. 17.5% in 1.3×;  = 0.039 and 17.5% vs. 2.5% in 2.0×;  = 0.034). In 3D GRE, the CS revealed a significantly higher ISM index than the SR (22.5% vs. 2.5%;  = 0.011) in 2.0 × faster images. However, the ISM index was identical for the 2.0× CS and 1.3× SR (22.5% vs. 27.5%;  = 0.62) with comparable time costs.

CONCLUSION

The GAN-based SR outperformed CS in image similarity with 2D GRE for MRI acceleration. In addition, CS was more advantageous in 3D GRE than SR.

摘要

背景

目前尚不清楚基于深度学习的超分辨率技术(SR)或压缩感知技术(CS)是否可以加速磁共振成像(MRI)。

目的

比较 SR 加速图像和 CS 图像与参考二维和三维梯度回波序列(GRE)脑 MRI 的图像相似性。

材料与方法

我们前瞻性地采集了 20 名志愿者的参考时间内的 1.3 倍和 2.0 倍加速的二维和三维 GRE 图像,通过减小矩阵大小或增加 CS 因子来实现。对于 SR,我们使用生成对抗网络(GAN)进行训练,通过两重交叉验证将低分辨率图像放大到参考图像。我们比较了加速图像和参考图像的结构相似性(SSIM)指数。放射科医生区分更快和参考图像的错误率被用作主观图像相似性(ISM)指数。

结果

SR 的 SSIM 明显高于 CS(SSIM=0.9993-0.999 与 0.9947-0.9986; < 0.001)。在二维 GRE 中,与 CS 相比,SR 图像更难以与参考图像区分(1.3 倍时的 ISM 指数为 40% 与 17.5%; = 0.039 和 17.5% 与 2.5%; = 0.034)。在三维 GRE 中,在 2.0 倍加速图像中,CS 比 SR 显示出更高的 ISM 指数(22.5% 与 2.5%; = 0.011)。然而,在 2.0 倍 CS 和 1.3 倍 SR 时,ISM 指数相同(22.5% 与 27.5%; = 0.62),时间成本相当。

结论

在二维 GRE 中,基于 GAN 的 SR 在 MRI 加速的图像相似性方面优于 CS。此外,CS 在三维 GRE 中比 SR 更具优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验