Suppr超能文献

基于生成对抗网络和非配对多层面的 3D 各向同性超分辨率前列腺 MRI 成像

3D Isotropic Super-resolution Prostate MRI Using Generative Adversarial Networks and Unpaired Multiplane Slices.

机构信息

Department of Radiology, Columbia University Irving Medical Center, 622 W 168 11th St, New York, NY, USA.

Department of Information and Computer Engineering, Chung Yuan Christian University, Chung Li District, 200 Chung Pei Road, Taoyuan City, Taiwan.

出版信息

J Digit Imaging. 2021 Oct;34(5):1199-1208. doi: 10.1007/s10278-021-00510-w. Epub 2021 Sep 10.

Abstract

We developed a deep learning-based super-resolution model for prostate MRI. 2D T2-weighted turbo spin echo (T2w-TSE) images are the core anatomical sequences in a multiparametric MRI (mpMRI) protocol. These images have coarse through-plane resolution, are non-isotropic, and have long acquisition times (approximately 10-15 min). The model we developed aims to preserve high-frequency details that are normally lost after 3D reconstruction. We propose a novel framework for generating isotropic volumes using generative adversarial networks (GAN) from anisotropic 2D T2w-TSE and single-shot fast spin echo (ssFSE) images. The CycleGAN model used in this study allows the unpaired dataset mapping to reconstruct super-resolution (SR) volumes. Fivefold cross-validation was performed. The improvements from patch-to-volume reconstruction (PVR) to SR are 80.17%, 63.77%, and 186% for perceptual index (PI), RMSE, and SSIM, respectively; the improvements from slice-to-volume reconstruction (SVR) to SR are 72.41%, 17.44%, and 7.5% for PI, RMSE, and SSIM, respectively. Five ssFSE cases were used to test for generalizability; the perceptual quality of SR images surpasses the in-plane ssFSE images by 37.5%, with 3.26% improvement in SSIM and a higher RMSE by 7.92%. SR images were quantitatively assessed with radiologist Likert scores. Our isotropic SR volumes are able to reproduce high-frequency detail, maintaining comparable image quality to in-plane TSE images in all planes without sacrificing perceptual accuracy. The SR reconstruction networks were also successfully applied to the ssFSE images, demonstrating that high-quality isotropic volume achieved from ultra-fast acquisition is feasible.

摘要

我们开发了一种基于深度学习的前列腺 MRI 超分辨率模型。二维 T2 加权涡轮自旋回波(T2w-TSE)图像是多参数 MRI(mpMRI)协议中的核心解剖序列。这些图像具有较粗的层间分辨率,各向异性,采集时间较长(约 10-15 分钟)。我们开发的模型旨在保留经过 3D 重建后通常丢失的高频细节。我们提出了一种使用生成对抗网络(GAN)从各向异性二维 T2w-TSE 和单次快速自旋回波(ssFSE)图像生成各向同性体积的新框架。本研究中使用的 CycleGAN 模型允许对未配对数据集进行映射,以重建超分辨率(SR)体积。进行了五重交叉验证。从斑块到体积重建(PVR)到 SR 的改进分别为感知指数(PI)、均方根误差(RMSE)和结构相似性指数(SSIM)的 80.17%、63.77%和 186%;从切片到体积重建(SVR)到 SR 的改进分别为 PI、RMSE 和 SSIM 的 72.41%、17.44%和 7.5%。使用五例 ssFSE 病例进行了通用性测试;SR 图像的感知质量比平面内 ssFSE 图像高 37.5%,SSIM 提高了 3.26%,RMSE 提高了 7.92%。使用放射科医生李克特评分对 SR 图像进行了定量评估。我们的各向同性 SR 体积能够再现高频细节,在所有平面上保持与平面内 TSE 图像相当的图像质量,而不会牺牲感知准确性。SR 重建网络也成功应用于 ssFSE 图像,表明从超快速采集获得高质量各向同性体积是可行的。

相似文献

1
3D Isotropic Super-resolution Prostate MRI Using Generative Adversarial Networks and Unpaired Multiplane Slices.
J Digit Imaging. 2021 Oct;34(5):1199-1208. doi: 10.1007/s10278-021-00510-w. Epub 2021 Sep 10.
2
High-Resolution 3D MRI With Deep Generative Networks via Novel Slice-Profile Transformation Super-Resolution.
IEEE Access. 2023;11:95022-95036. doi: 10.1109/access.2023.3307577. Epub 2023 Aug 22.
4
Physics-informed deep learning for T2-deblurred superresolution turbo spin echo MRI.
Magn Reson Med. 2023 Dec;90(6):2362-2374. doi: 10.1002/mrm.29814. Epub 2023 Aug 14.
5
A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction.
Phys Med Biol. 2023 Jun 23;68(13). doi: 10.1088/1361-6560/acdc7e.
6
SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks.
Tomography. 2022 Mar 24;8(2):905-919. doi: 10.3390/tomography8020073.
7
Super-Resolution Magnetic Resonance Imaging of the Knee Using 2-Dimensional Turbo Spin Echo Imaging.
Invest Radiol. 2020 Aug;55(8):481-493. doi: 10.1097/RLI.0000000000000676.
9
A novel GAN-based three-axis mutually supervised super-resolution reconstruction method for rectal cancer MR image.
Comput Methods Programs Biomed. 2024 Dec;257:108426. doi: 10.1016/j.cmpb.2024.108426. Epub 2024 Sep 16.
10
MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T.
Acta Radiol. 2015 Feb;56(2):174-81. doi: 10.1177/0284185114524196. Epub 2014 Feb 19.

引用本文的文献

2
An overview of utilizing artificial intelligence in localized prostate cancer imaging.
Expert Rev Med Devices. 2025 Apr;22(4):293-310. doi: 10.1080/17434440.2025.2477601. Epub 2025 Mar 19.
3
Quality of T2-weighted MRI re-acquisition versus deep learning GAN image reconstruction: A multi-reader study.
Eur J Radiol. 2024 Jan;170:111259. doi: 10.1016/j.ejrad.2023.111259. Epub 2023 Dec 12.
4
Zero-Shot Medical Image Translation via Frequency-Guided Diffusion Models.
IEEE Trans Med Imaging. 2024 Mar;43(3):980-993. doi: 10.1109/TMI.2023.3325703. Epub 2024 Mar 5.

本文引用的文献

1
Understanding PI-QUAL for prostate MRI quality: a practical primer for radiologists.
Insights Imaging. 2021 May 1;12(1):59. doi: 10.1186/s13244-021-00996-6.
2
Review of the accuracy of multi-parametric MRI prostate in detecting prostate cancer within a local reporting service.
J Med Imaging Radiat Oncol. 2020 Jun;64(3):379-384. doi: 10.1111/1754-9485.13029. Epub 2020 Apr 3.
3
Deformable Slice-to-Volume Registration for Motion Correction of Fetal Body and Placenta MRI.
IEEE Trans Med Imaging. 2020 Sep;39(9):2750-2759. doi: 10.1109/TMI.2020.2974844. Epub 2020 Feb 18.
4
Generative adversarial network in medical imaging: A review.
Med Image Anal. 2019 Dec;58:101552. doi: 10.1016/j.media.2019.101552. Epub 2019 Aug 31.
5
Multiparametric MRI for prostate cancer diagnosis: current status and future directions.
Nat Rev Urol. 2020 Jan;17(1):41-61. doi: 10.1038/s41585-019-0212-4. Epub 2019 Jul 17.
6
Defining the incremental value of 3D T2-weighted imaging in the assessment of prostate cancer extracapsular extension.
Eur Radiol. 2019 Oct;29(10):5488-5497. doi: 10.1007/s00330-019-06070-6. Epub 2019 Mar 18.
7
3D T2-weighted imaging to shorten multiparametric prostate MRI protocols.
Eur Radiol. 2018 Apr;28(4):1634-1641. doi: 10.1007/s00330-017-5120-5. Epub 2017 Nov 13.
8
PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI.
IEEE Trans Med Imaging. 2017 Oct;36(10):2031-2044. doi: 10.1109/TMI.2017.2737081. Epub 2017 Sep 1.
9
Deep Convolutional Neural Network for Inverse Problems in Imaging.
IEEE Trans Image Process. 2017 Sep;26(9):4509-4522. doi: 10.1109/TIP.2017.2713099. Epub 2017 Jun 15.
10
Multiparametric MR Imaging for Detection and Locoregional Staging of Prostate Cancer.
Top Magn Reson Imaging. 2016 Jun;25(3):109-17. doi: 10.1097/RMR.0000000000000089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验