Suppr超能文献

采用定量统计分析方法研究参数及其相互作用在评估股骨骨折风险中的意义。

Study of the significance of parameters and their interaction on assessing femoral fracture risk by quantitative statistical analysis.

机构信息

Department of Mechanical Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA.

Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada.

出版信息

Med Biol Eng Comput. 2022 Mar;60(3):843-854. doi: 10.1007/s11517-022-02516-0. Epub 2022 Feb 4.

Abstract

Early assessment of hip fracture helps develop therapeutic and preventive mechanisms that may reduce the occurrence of hip fracture. An accurate assessment of hip fracture risk requires proper consideration of the loads, the physiological and morphological parameters, and the interactions between these parameters. Hence, this study aims at analyzing the significance of parameters and their interactions by conducting a quantitative statistical analysis. A multiple regression model was developed considering different loading directions during a sideways fall (angle [Formula: see text] and [Formula: see text] on the coronal and transverse planes, respectively), age, gender, patient weight, height, and femur morphology as independent parameters and Fracture Risk Index (FRI) as a dependent parameter. Strain-based criteria were used for the calculation of FRI with the maximum principal strain obtained from quantitative computed tomography-based finite element analysis. The statistical result shows that [Formula: see text] [Formula: see text], age [Formula: see text], true moment length [Formula: see text], gender [Formula: see text], FNA [Formula: see text], height [Formula: see text], and FSL [Formula: see text] significantly affect FRI where [Formula: see text] is the most influential parameter. The significance of two-level interaction [Formula: see text] and three-level interaction [Formula: see text] shows that the effect of parameters is dissimilar and depends on other parameters suggesting the variability of FRI from person to person.

摘要

早期评估髋部骨折有助于制定治疗和预防机制,可能会减少髋部骨折的发生。准确评估髋部骨折风险需要适当考虑负荷、生理和形态参数以及这些参数之间的相互作用。因此,本研究旨在通过进行定量统计分析来分析参数及其相互作用的意义。考虑到侧向跌倒时的不同加载方向(在冠状面和横断面上分别为[公式:见文本]和[公式:见文本]角)、年龄、性别、患者体重、身高和股骨形态作为独立参数,骨折风险指数(FRI)作为因变量,建立了多元回归模型。基于定量 CT 有限元分析得到的最大主应变,使用应变准则计算 FRI。统计结果表明,[公式:见文本]、[公式:见文本]、年龄[公式:见文本]、真实力矩长度[公式:见文本]、性别[公式:见文本]、FNA[公式:见文本]、身高[公式:见文本]和 FSL[公式:见文本]显著影响 FRI,其中[公式:见文本]是最具影响力的参数。两级交互[公式:见文本]和三级交互[公式:见文本]的显著性表明,参数的影响是不同的,并且取决于其他参数,这表明 FRI 因人而异存在变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验