Suppr超能文献

胰岛素前体蛋白的生物合成、结构和折叠。

Biosynthesis, structure, and folding of the insulin precursor protein.

机构信息

Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.

Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, Michigan.

出版信息

Diabetes Obes Metab. 2018 Sep;20 Suppl 2(Suppl 2):28-50. doi: 10.1111/dom.13378.

Abstract

Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.

摘要

胰岛β细胞中的胰岛素合成起始于前胰岛素原。血糖浓度在餐前和餐后波动,对前胰岛素原生物合成产生主要的动态变化。伴随着胰岛素前体翻译的上调,包括与信号肽成功定向、前胰岛素原易位和信号肽切割相关的内质网(ER)易位装置的元件,所有这些都是启动正确胰岛素原折叠途径所必需的。前胰岛素原本身的一级结构所承受的进化压力保留了折叠的效率(“折叠性”),值得注意的是,这些进化压力与保护胰岛素最终生物活性的压力不同。前胰岛素原的折叠性在 ER 中表现出来,其中局部环境旨在协助前胰岛素原折叠的整体负荷,并有利于其二硫键形成(同时限制错误折叠),所有这些都与 ER 应激反应途径密切相关,这些途径对胰岛β细胞具有复杂的(有益的,以及潜在的有害的)影响。前胰岛素原错误折叠可能是由于 ER 中前胰岛素原生物合成负荷过多、前胰岛素原编码序列突变或遗传易感性导致 ER 折叠环境改变而发生的。前胰岛素原错误折叠是一种与胰岛素生成不足和糖尿病密切相关的表型,在各种情况下都有表现:携带前胰岛素原错误折叠突变体的啮齿动物模型、携带 Mutant INS-gene-induced Diabetes of Youth (MIDY) 的人类患者、携带关键 ER 驻留蛋白突变的动物模型和人类患者,以及在更常见的 2 型糖尿病中。

相似文献

1
Biosynthesis, structure, and folding of the insulin precursor protein.
Diabetes Obes Metab. 2018 Sep;20 Suppl 2(Suppl 2):28-50. doi: 10.1111/dom.13378.
2
Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells.
Vitam Horm. 2014;95:35-62. doi: 10.1016/B978-0-12-800174-5.00002-8.
3
Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes.
Mol Aspects Med. 2015 Apr;42:105-18. doi: 10.1016/j.mam.2015.01.001. Epub 2015 Jan 8.
4
Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes.
Ann N Y Acad Sci. 2018 Apr;1418(1):5-19. doi: 10.1111/nyas.13531. Epub 2018 Jan 28.
5
INS-gene mutations: from genetics and beta cell biology to clinical disease.
Mol Aspects Med. 2015 Apr;42:3-18. doi: 10.1016/j.mam.2014.12.001. Epub 2014 Dec 24.
6
Diabetes-Associated Mutations in Proinsulin Provide a "Molecular Rheostat" of Nascent Foldability.
Curr Diab Rep. 2022 Feb;22(2):85-94. doi: 10.1007/s11892-022-01447-2. Epub 2022 Feb 4.
7
Disulfide Mispairing During Proinsulin Folding in the Endoplasmic Reticulum.
Diabetes. 2016 Apr;65(4):1050-60. doi: 10.2337/db15-1345. Epub 2016 Jan 28.
8
Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes.
Diabetes. 2012 Apr;61(4):828-37. doi: 10.2337/db11-0878. Epub 2012 Feb 22.
9
Proinsulin misfolding and diabetes: mutant INS gene-induced diabetes of youth.
Trends Endocrinol Metab. 2010 Nov;21(11):652-9. doi: 10.1016/j.tem.2010.07.001. Epub 2010 Aug 18.

引用本文的文献

1
Pancreatic β-cell Dysfunction and Diabetes.
Juntendo Med J. 2025 May 9;71(3):158-165. doi: 10.14789/ejmj.JMJ25-0001-R. eCollection 2025.
2
Integrated histopathology of the human pancreas throughout stages of type 1 diabetes progression.
Res Sq. 2025 Jun 10:rs.3.rs-6673858. doi: 10.21203/rs.3.rs-6673858/v1.
3
SEL1L-HRD1-mediated ERAD in mammals.
Nat Cell Biol. 2025 Jun 25. doi: 10.1038/s41556-025-01690-1.
6
Integrated histopathology of the human pancreas throughout stages of type 1 diabetes progression.
bioRxiv. 2025 Mar 19:2025.03.18.644000. doi: 10.1101/2025.03.18.644000.
7
The role of endoplasmic reticulum stress in type 2 diabetes mellitus mechanisms and impact on islet function.
PeerJ. 2025 Mar 28;13:e19192. doi: 10.7717/peerj.19192. eCollection 2025.
9
Molecular puzzle of insulin: structural assembly pathways and their role in diabetes.
Front Cell Dev Biol. 2025 Feb 20;13:1502469. doi: 10.3389/fcell.2025.1502469. eCollection 2025.
10
Synthetic studies of the mutant proinsulin syndrome demonstrate correlation between folding efficiency and age of diabetes onset.
Int J Pept Res Ther. 2025 Jan;31(1). doi: 10.1007/s10989-024-10665-z. Epub 2024 Nov 20.

本文引用的文献

1
Eukaryotic translation initiation factor 2 α phosphorylation as a therapeutic target in diabetes.
Expert Rev Endocrinol Metab. 2014 Jul;9(4):345-356. doi: 10.1586/17446651.2014.927309. Epub 2014 Jun 11.
2
IRE1-XBP1 pathway regulates oxidative proinsulin folding in pancreatic β cells.
J Cell Biol. 2018 Apr 2;217(4):1287-1301. doi: 10.1083/jcb.201707143. Epub 2018 Mar 5.
4
Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes.
Ann N Y Acad Sci. 2018 Apr;1418(1):5-19. doi: 10.1111/nyas.13531. Epub 2018 Jan 28.
7
Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata.
Cell Metab. 2017 Sep 5;26(3):568-575.e3. doi: 10.1016/j.cmet.2017.08.013.
8
Physiological/pathological ramifications of transcription factors in the unfolded protein response.
Genes Dev. 2017 Jul 15;31(14):1417-1438. doi: 10.1101/gad.297374.117.
9
Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion.
Antioxid Redox Signal. 2017 Nov 20;27(15):1178-1199. doi: 10.1089/ars.2017.7148. Epub 2017 Sep 26.
10
The Munich MIDY Pig Biobank - A unique resource for studying organ crosstalk in diabetes.
Mol Metab. 2017 Jun 13;6(8):931-940. doi: 10.1016/j.molmet.2017.06.004. eCollection 2017 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验