Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science &Technology, Nanjing, 210044, China; Precision Regional Earth Modeling and Information Center, Nanjing University of Information Science &Technology, Nanjing, 210044, China.
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science &Technology, Nanjing, 210044, China; Precision Regional Earth Modeling and Information Center, Nanjing University of Information Science &Technology, Nanjing, 210044, China.
Environ Pollut. 2022 May 1;300:118944. doi: 10.1016/j.envpol.2022.118944. Epub 2022 Feb 1.
The terrain effect on atmospheric environment is poorly understood in particular for the polluted region with underlying complex topography. Therefore, this study targeted the Sichuan Basin (SCB), a deep basin with severe PM pollution enclosed by the eastern Tibetan Plateau (TP), Yunnan-Guizhou Plateaus (YGP) and mountains over Southwest China, and we investigated the terrain effect on seasonal PM distribution and the meteorological mechanism based on the WRF-Chem simulation with stuffing the basin topography. It is characterized that the three-dimensional distribution of topography-induced PM concentrations over the SCB with the seasonal shift of regional PM averages from approximately 30 μg m in summer to 90 μg m in winter at surface layer and from summertime 10 μg m to wintertime 30 μg m in the lower free troposphere. Such basin-forced PM changes presented the vertically monotonical declines concentrated within the lower troposphere below 3.6 km in spring, 2.3 km in summer, 2.6 km in autumn and 4.8 km in winter. Impacts of deep basin aggravated PM accumulation within the SCB and transport toward the surrounding plateaus contributing approximately 50-90% to PM levels over the regions of eastern TP and northern YGP. In the SCB, atmospheric thermal structure in the lower troposphere could build a vertical convergence layer between the boundary layer and free troposphere, acting as a lid inhibiting air diffusion, which was regulated by the terrain effects on interactions of westerlies and Asian monsoons, especially the wintertime strong warm lid deteriorating air pollution in the SCB. Furthermore, warm and humid air conditions within the basin prompted sulfur oxidation ratio by +0.02 and nitrogen oxidation ratio by +0.22 effectively producing the secondary PM in atmospheric environment.
地形对大气环境的影响在特定情况下理解较差,特别是对于具有复杂下垫面地形的污染区域。因此,本研究针对四川盆地(SCB),该盆地为一个深盆,被东部青藏高原(TP)、云贵高原(YGP)和中国西南部的山脉所包围,PM 污染严重,我们研究了地形对季节性 PM 分布的影响以及基于填充盆地地形的 WRF-Chem 模拟的气象机制。研究结果表明,随着区域 PM 平均值从夏季的约 30μg/m 到冬季的 90μg/m 出现在地表层,以及从夏季的 10μg/m 到冬季的 30μg/m 出现在自由对流层下部,地形诱导的 PM 浓度的三维分布特征在 SCB 上发生季节性变化。这种盆地强迫的 PM 变化呈现出垂直单调下降的特征,集中在 3.6km 以下的对流层下部,春季为 3.6km,夏季为 2.3km,秋季为 2.6km,冬季为 4.8km。深盆地的影响加剧了 SCB 内 PM 的积累,并向周围高原输送,导致 TP 东部和 YGP 北部地区的 PM 水平增加约 50-90%。在 SCB 内,低层大气热结构可在边界层和自由对流层之间形成一个垂直汇聚层,作为一个抑制空气扩散的盖子,该盖子受到西风和亚洲季风相互作用的地形影响的调节,特别是冬季强烈的暖盖会使 SCB 的空气污染恶化。此外,盆地内温暖潮湿的空气条件有效地促进了大气环境中二次 PM 的生成,使硫氧化比增加了 0.02,氮氧化比增加了 0.22。