Perstin Alan, Poirier Yannick, Sawant Amit, Tambasco Mauro
Department of Physics, San Diego State University, San Diego, California.
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland.
Int J Radiat Oncol Biol Phys. 2022 Jun 1;113(2):437-447. doi: 10.1016/j.ijrobp.2022.01.049. Epub 2022 Feb 4.
To investigate a plasmid DNA nicking assay approach for isolating and quantifying the DNA-damaging effects of ultrahigh-dose-rate (ie, FLASH) irradiation relative to conventional dose-rate irradiation.
We constructed and irradiated phantoms containing plasmid DNA to nominal doses of 20 Gy and 30 Gy using 16 MeV electrons at conventional (0.167 Gy/s) and FLASH (46.6 Gy/s and 93.2 Gy/s) dose rates. We delivered conventional dose rates using a standard clinical Varian iX linear accelerator and FLASH dose rates (FDRs) using a modified Varian 21EX C-series linear accelerator. We ran the irradiated DNA and controls (0 Gy) through an agarose gel electrophoresis procedure that sorted and localized the DNA into bands associated with single strand breaks (SSBs), double strand breaks (DSBs), and undamaged DNA. We quantitatively analyzed the gel images to compute the relative yields of SSBs and DSBs and applied a mathematical model of plasmid DNA damage as a function of dose to compute the relative biological effectiveness (RBE) of SSB and DSB (RBE and RBE) damage for a given endpoint and FDR.
Both RBE and RBE were less than unity with the FDR irradiations, indicating FLASH sparing. With regard to the more deleterious DNA DSB damage, the DSB RBEs of FLASH beams at dose rates of 46.6 Gy/s and 93.2 Gy/s relative to the conventional 16 MeV beam dose rate were 0.54 ± 0.15 and 0.55 ± 0.17, respectively.
This study demonstrated the feasibility of using a DNA-based phantom to isolate and assess the FLASH sparing effect on DNA. We also found that FLASH irradiation causes less damage to DNA compared with a conventional dose rate. This result supports the notion that the protective effect of FLASH irradiation occurs at least partially via fundamental biochemical processes.
研究一种质粒DNA切口分析方法,用于分离和量化超高剂量率(即FLASH)照射相对于传统剂量率照射的DNA损伤效应。
我们构建了含有质粒DNA的模型,并使用16 MeV电子以传统(0.167 Gy/s)和FLASH(46.6 Gy/s和93.2 Gy/s)剂量率将其照射至名义剂量20 Gy和30 Gy。我们使用标准临床瓦里安iX直线加速器提供传统剂量率,使用改良的瓦里安21EX C系列直线加速器提供FLASH剂量率(FDR)。我们将照射后的DNA和对照(0 Gy)进行琼脂糖凝胶电泳,该过程将DNA分类并定位到与单链断裂(SSB)、双链断裂(DSB)和未受损DNA相关的条带中。我们对凝胶图像进行定量分析,以计算SSB和DSB的相对产率,并应用质粒DNA损伤作为剂量函数的数学模型,计算给定终点和FDR下SSB和DSB损伤的相对生物效应(RBE)。
FDR照射下RBE和RBE均小于1,表明FLASH具有保护作用。对于更具危害性的DNA DSB损伤,46.6 Gy/s和93.2 Gy/s剂量率的FLASH束相对于传统16 MeV束剂量率的DSB RBE分别为0.54±0.15和0.55±0.17。
本研究证明了使用基于DNA的模型分离和评估FLASH对DNA保护作用的可行性。我们还发现,与传统剂量率相比,FLASH照射对DNA的损伤较小。这一结果支持了FLASH照射的保护作用至少部分通过基本生化过程发生的观点。