Suppr超能文献

生物医学数据报告的 BMS-LM 本体贯穿研究过程的整个生命周期:从数据模型到本体。

The BMS-LM ontology for biomedical data reporting throughout the lifecycle of a research study: From data model to ontology.

机构信息

Fealinx, 37 rue Adam Ledoux 92400 Courbevoie, France; Université de Paris, PARCC, INSERM, F-75006 Paris, France; Université de Technologie de Compiègne, Roberval, Compiègne, France.

Althenas, Nantes, France.

出版信息

J Biomed Inform. 2022 Mar;127:104007. doi: 10.1016/j.jbi.2022.104007. Epub 2022 Feb 4.

Abstract

Biomedical research data reuse and sharing is essential for fostering research progress. To this aim, data producers need to master data management and reporting through standard and rich metadata, as encouraged by open data initiatives such as the FAIR (Findable, Accessible, Interoperable, Reusable) guidelines. This helps data re-users to understand and reuse the shared data with confidence. Therefore, dedicated frameworks are required. The provenance reporting throughout a biomedical study lifecycle has been proposed as a way to increase confidence in data while reusing it. The Biomedical Study - Lifecycle Management (BMS-LM) data model has implemented provenance and lifecycle traceability for several multimodal-imaging techniques but this is not enough for data understanding while reusing it. Actually, in the large scope of biomedical research, a multitude of metadata sources, also called Knowledge Organization Systems (KOSs), are available for data annotation. In addition, data producers uses local terminologies or KOSs, containing vernacular terms for data reporting. The result is a set of heterogeneous KOSs (local and published) with different formats and levels of granularity. To manage the inherent heterogeneity, semantic interoperability is encouraged by the Research Data Management (RDM) community. Ontologies, and more specifically top ontologies such as BFO and DOLCE, make explicit the metadata semantics and enhance semantic interoperability. Based on the BMS-LM data model and the BFO top ontology, the BioMedical Study - Lifecycle Management (BMS-LM) core ontology is proposed together with an associated framework for semantic interoperability between heterogeneous KOSs. It is made of four ontological levels: top/core/domain/local and aims to build bridges between local and published KOSs. In this paper, the conversion of the BMS-LM data model to a core ontology is detailed. The implementation of its semantic interoperability in a specific domain context is explained and illustrated with examples from small animal preclinical research.

摘要

生物医学研究数据的重复利用和共享对于推动研究进展至关重要。为此,数据生产者需要通过标准和丰富的元数据来掌握数据管理和报告,这是开放数据倡议(如 FAIR(可发现、可访问、可互操作、可重复使用)指南)所鼓励的。这有助于数据再利用者自信地理解和重复利用共享数据。因此,需要专门的框架。在整个生物医学研究生命周期中报告来源已被提出,作为增加数据可信度并在重复使用数据时增加数据可信度的一种方式。生物医学研究-生命周期管理 (BMS-LM) 数据模型已经为多种多模态成像技术实现了来源和生命周期可追溯性,但这对于在重复使用数据时理解数据还远远不够。实际上,在广泛的生物医学研究中,有许多元数据来源,也称为知识组织系统 (KOS),可用于数据注释。此外,数据生产者使用本地术语或 KOS,包含用于数据报告的白话术语。结果是一组具有不同格式和粒度级别的异构 KOS(本地和发布)。为了管理固有的异构性,研究数据管理 (RDM) 社区鼓励语义互操作性。本体,特别是 BFO 和 DOLCE 等顶级本体,明确了元数据语义并增强了语义互操作性。基于 BMS-LM 数据模型和 BFO 顶级本体,提出了生物医学研究-生命周期管理 (BMS-LM) 核心本体以及用于异构 KOS 之间语义互操作性的相关框架。它由四个本体论级别组成:顶级/核心/域/本地,旨在在本地和发布的 KOS 之间架起桥梁。本文详细介绍了将 BMS-LM 数据模型转换为核心本体的过程。解释了在特定领域上下文中实现其语义互操作性的方法,并通过小动物临床前研究的示例进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验