Nguyen Minh Tri, Sutton Preston, Palumbo Andrea, Fischer Michael G, Hua Xiao, Gunkel Ilja, Steiner Ullrich
Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
Institute for Frontier Materials, Deakin University Burwood VIC 3125 Australia.
Mater Adv. 2021 Nov 2;3(1):362-372. doi: 10.1039/d1ma00708d. eCollection 2022 Jan 4.
The spinel LiTiO (LTO) is a promising lithium ion battery anode material with the potential to supplement graphite as an industry standard, but its low electrical conductivity and Li-ion diffusivity need to be overcome. Here, mesoporous LTO microspheres with carbon-coatings were formed by phase separation of a homopolymer from microphase-separated block copolymers of varying molar masses containing sol-gel precursors. Upon heating the composite underwent a sol-gel condensation reaction followed by the eventual pyrolysis of the polymer templates. The optimised mesoporous LTO microspheres demonstrated an excellent electrochemical performance with an excellent specific discharge capacity of 164 mA h g, 95% of which was retained after 1000 cycles at a C-rate of 10.
尖晶石LiTiO(LTO)是一种很有前景的锂离子电池负极材料,有潜力作为行业标准来补充石墨,但需要克服其低电导率和锂离子扩散率的问题。在此,通过将均聚物从含有溶胶 - 凝胶前驱体的不同摩尔质量的微相分离嵌段共聚物中进行相分离,形成了具有碳涂层的介孔LTO微球。加热复合材料时,会发生溶胶 - 凝胶缩合反应,随后聚合物模板最终热解。优化后的介孔LTO微球表现出优异的电化学性能,其优异的比放电容量为164 mA h g,在10 C倍率下循环1000次后仍保留95%。