Suppr超能文献

硒空位和近场与远场协同作用增强的超声敏表面增强拉曼散射活性基底用于疟疾检测。

Selenium Vacancies and Synergistic Effect of Near- and Far-Field-Enabled Ultrasensitive Surface-Enhanced Raman-Scattering-Active Substrates for Malaria Detection.

机构信息

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.

Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China.

出版信息

J Phys Chem Lett. 2022 Feb 17;13(6):1453-1463. doi: 10.1021/acs.jpclett.1c03873. Epub 2022 Feb 7.

Abstract

Defect engineering with the active control of defect states brings remarkable enhancement on surface-enhanced Raman scattering (SERS) by magnifying semiconductor-molecule interaction. Such light-trapping architectures can increase the light path length, which promotes photon-analytes interactions and further improves the SERS sensitivity. However, by far the reported semiconductor SERS-active substrates based on these strategies are often nonuniform and commonly in the form of isolated laminates or random clusters, which limit their reliability and stability for practical applications. Herein, we develop self-grown single-crystalline "V-shape" SnSe (SnSe, SnSe, SnSe) nanoflake arrays (SnSe NFAs) with controlled selenium vacancies over large-area (10 cm × 10 cm) for ultrahigh-sensitivity SERS. First-principles density functional theory (DFT) is used to calculate the band gap and the electronic density of states (DOS). Based on the Herzberg-Teller theory regarding the vibronic coupling, the results of theoretical calculation reveal that the downshift of band edge and high DOS of SnSe can effectively enhance the vibronic coupling within the SnSe-R6G system, which in turn enhances the photoinduced charge transfer resonance and contributes to the SERS activity with a remarkable enhancement factor of 1.68 × 10. Furthermore, we propose and demonstrate ultrasensitive (10 M for R6G), uniform, and reliable SERS substrates by forming SnSe NFAs/Au heterostructures via a facile Au evaporation process. We attribute the superior performance of our SnSe NFAs/Au heterostructures to the following reasons: (1) selenium vacancies and (2) synergistic effect of the near and far fields. In addition, we successfully build a detection platform to achieve rapid (∼15 min for the whole process), antibody-free, , and reliable early malaria detection (100% detection rate for 10 samples with 160 points) in whole blood, and molecular hemozoin (<100/mL) can be detected. Our approach not only provides an efficient technique to obtain large-area, uniform, and reliable SERS-active substrates but also offers a substantial impact on addressing practical issues in many application scenarios such as the detection of insect-borne infectious diseases.

摘要

采用缺陷态主动控制的缺陷工程技术可显著增强表面增强拉曼散射(SERS),放大半导体-分子相互作用。这种光捕获结构可以增加光程长度,促进光子-分析物相互作用,进一步提高 SERS 灵敏度。然而,到目前为止,基于这些策略报道的半导体 SERS 活性衬底通常是不均匀的,并且通常以孤立的层或随机的簇的形式存在,这限制了它们在实际应用中的可靠性和稳定性。在此,我们通过在大面积(10 cm×10 cm)上控制硒空位来开发自生长的单晶“V 形”SnSe(SnSe、SnSe、SnSe)纳米片阵列(SnSe NFA),用于超高灵敏度 SERS。首先使用基于密度泛函理论(DFT)的第一性原理计算带隙和电子态密度(DOS)。基于 Herzberg-Teller 理论关于振子耦合的理论,理论计算结果表明,带边的下移和 SnSe 的高 DOS 可以有效地增强 SnSe-R6G 体系内的振子耦合,从而增强光诱导电荷转移共振,并有助于 SERS 活性,增强因子高达 1.68×10。此外,我们通过简单的 Au 蒸发工艺形成 SnSe NFA/Au 异质结构,提出并证明了超灵敏(R6G 为 10 M)、均匀和可靠的 SERS 衬底。我们将 SnSe NFA/Au 异质结构的优异性能归因于以下两个原因:(1)硒空位和(2)近场和远场的协同效应。此外,我们成功构建了一个检测平台,用于实现快速(整个过程约 15 分钟)、无抗体、可靠的早期疟疾检测(10 个样本 160 个点的检测率为 100%),并且可以检测到分子血卟啉(<100/mL)。我们的方法不仅提供了一种获得大面积、均匀和可靠的 SERS 活性衬底的有效技术,而且还对解决许多应用场景中的实际问题(如昆虫传播传染病的检测)产生了重大影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验